Browse Source

Create Global.h

master
Kris Winer 9 years ago
parent
commit
45beee8f85
  1. 523
      WarmStartandAccelCal/Global.h

523
WarmStartandAccelCal/Global.h

@ -0,0 +1,523 @@ @@ -0,0 +1,523 @@
#ifndef Globals_h
#define Globals_h
/*************************************************************************************************/
/************* ***************/
/************* Parameter Definitions ***************/
/************* ***************/
/*************************************************************************************************/
// These are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Kp 2.0f * 5.0f
#define Ki 0.0f
// BMP280 registers
#define BMP280_TEMP_XLSB 0xFC
#define BMP280_TEMP_LSB 0xFB
#define BMP280_TEMP_MSB 0xFA
#define BMP280_PRESS_XLSB 0xF9
#define BMP280_PRESS_LSB 0xF8
#define BMP280_PRESS_MSB 0xF7
#define BMP280_CONFIG 0xF5
#define BMP280_CTRL_MEAS 0xF4
#define BMP280_STATUS 0xF3
#define BMP280_RESET 0xE0
#define BMP280_ID 0xD0 // should be 0x58
#define BMP280_CALIB00 0x88
// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
//
//Magnetometer Registers
#define AK8963_ADDRESS 0x0C
#define WHO_AM_I_AK8963 0x00 // should return 0x48
#define INFO 0x01
#define AK8963_ST1 0x02 // data ready status bit 0
#define AK8963_XOUT_L 0x03 // data
#define AK8963_XOUT_H 0x04
#define AK8963_YOUT_L 0x05
#define AK8963_YOUT_H 0x06
#define AK8963_ZOUT_L 0x07
#define AK8963_ZOUT_H 0x08
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC 0x0C // Self test control
#define AK8963_I2CDIS 0x0F // I2C disable
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
#define SELF_TEST_X_GYRO 0x00
#define SELF_TEST_Y_GYRO 0x01
#define SELF_TEST_Z_GYRO 0x02
/*#define X_FINE_GAIN 0x03 // [7:0] fine gain
#define Y_FINE_GAIN 0x04
#define Z_FINE_GAIN 0x05
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC 0x07
#define YA_OFFSET_H 0x08
#define YA_OFFSET_L_TC 0x09
#define ZA_OFFSET_H 0x0A
#define ZA_OFFSET_L_TC 0x0B */
#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E
#define SELF_TEST_Z_ACCEL 0x0F
#define SELF_TEST_A 0x10
#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
#define XG_OFFSET_L 0x14
#define YG_OFFSET_H 0x15
#define YG_OFFSET_L 0x16
#define ZG_OFFSET_H 0x17
#define ZG_OFFSET_L 0x18
#define SMPLRT_DIV 0x19
#define CONFIG 0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define ACCEL_CONFIG2 0x1D
#define LP_ACCEL_ODR 0x1E
#define WOM_THR 0x1F
#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
#define FIFO_EN 0x23
#define I2C_MST_CTRL 0x24
#define I2C_SLV0_ADDR 0x25
#define I2C_SLV0_REG 0x26
#define I2C_SLV0_CTRL 0x27
#define I2C_SLV1_ADDR 0x28
#define I2C_SLV1_REG 0x29
#define I2C_SLV1_CTRL 0x2A
#define I2C_SLV2_ADDR 0x2B
#define I2C_SLV2_REG 0x2C
#define I2C_SLV2_CTRL 0x2D
#define I2C_SLV3_ADDR 0x2E
#define I2C_SLV3_REG 0x2F
#define I2C_SLV3_CTRL 0x30
#define I2C_SLV4_ADDR 0x31
#define I2C_SLV4_REG 0x32
#define I2C_SLV4_DO 0x33
#define I2C_SLV4_CTRL 0x34
#define I2C_SLV4_DI 0x35
#define I2C_MST_STATUS 0x36
#define INT_PIN_CFG 0x37
#define INT_ENABLE 0x38
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
#define INT_STATUS 0x3A
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO 0x63
#define I2C_SLV1_DO 0x64
#define I2C_SLV2_DO 0x65
#define I2C_SLV3_DO 0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET 0x68
#define MOT_DETECT_CTRL 0x69
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2 0x6C
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
#define DMP_REG_1 0x70
#define DMP_REG_2 0x71
#define FIFO_COUNTH 0x72
#define FIFO_COUNTL 0x73
#define FIFO_R_W 0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H 0x77
#define XA_OFFSET_L 0x78
#define YA_OFFSET_H 0x7A
#define YA_OFFSET_L 0x7B
#define ZA_OFFSET_H 0x7D
#define ZA_OFFSET_L 0x7E
// EM7180 SENtral register map
// see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf
//
#define EM7180_QX 0x00 // this is a 32-bit normalized floating point number read from registers 0x00-03
#define EM7180_QY 0x04 // this is a 32-bit normalized floating point number read from registers 0x04-07
#define EM7180_QZ 0x08 // this is a 32-bit normalized floating point number read from registers 0x08-0B
#define EM7180_QW 0x0C // this is a 32-bit normalized floating point number read from registers 0x0C-0F
#define EM7180_QTIME 0x10 // this is a 16-bit unsigned integer read from registers 0x10-11
#define EM7180_MX 0x12 // int16_t from registers 0x12-13
#define EM7180_MY 0x14 // int16_t from registers 0x14-15
#define EM7180_MZ 0x16 // int16_t from registers 0x16-17
#define EM7180_MTIME 0x18 // uint16_t from registers 0x18-19
#define EM7180_AX 0x1A // int16_t from registers 0x1A-1B
#define EM7180_AY 0x1C // int16_t from registers 0x1C-1D
#define EM7180_AZ 0x1E // int16_t from registers 0x1E-1F
#define EM7180_ATIME 0x20 // uint16_t from registers 0x20-21
#define EM7180_GX 0x22 // int16_t from registers 0x22-23
#define EM7180_GY 0x24 // int16_t from registers 0x24-25
#define EM7180_GZ 0x26 // int16_t from registers 0x26-27
#define EM7180_GTIME 0x28 // uint16_t from registers 0x28-29
#define EM7180_Baro 0x2A // start of two-byte MS5637 pressure data, 16-bit signed interger
#define EM7180_BaroTIME 0x2C // start of two-byte MS5637 pressure timestamp, 16-bit unsigned
#define EM7180_Temp 0x2E // start of two-byte MS5637 temperature data, 16-bit signed interger
#define EM7180_TempTIME 0x30 // start of two-byte MS5637 temperature timestamp, 16-bit unsigned
#define EM7180_QRateDivisor 0x32 // uint8_t
#define EM7180_EnableEvents 0x33
#define EM7180_HostControl 0x34
#define EM7180_EventStatus 0x35
#define EM7180_SensorStatus 0x36
#define EM7180_SentralStatus 0x37
#define EM7180_AlgorithmStatus 0x38
#define EM7180_FeatureFlags 0x39
#define EM7180_ParamAcknowledge 0x3A
#define EM7180_SavedParamByte0 0x3B
#define EM7180_SavedParamByte1 0x3C
#define EM7180_SavedParamByte2 0x3D
#define EM7180_SavedParamByte3 0x3E
#define EM7180_ActualMagRate 0x45
#define EM7180_ActualAccelRate 0x46
#define EM7180_ActualGyroRate 0x47
#define EM7180_ActualBaroRate 0x48
#define EM7180_ActualTempRate 0x49
#define EM7180_ErrorRegister 0x50
#define EM7180_AlgorithmControl 0x54
#define EM7180_MagRate 0x55
#define EM7180_AccelRate 0x56
#define EM7180_GyroRate 0x57
#define EM7180_BaroRate 0x58
#define EM7180_TempRate 0x59
#define EM7180_LoadParamByte0 0x60
#define EM7180_LoadParamByte1 0x61
#define EM7180_LoadParamByte2 0x62
#define EM7180_LoadParamByte3 0x63
#define EM7180_ParamRequest 0x64
#define EM7180_ROMVersion1 0x70
#define EM7180_ROMVersion2 0x71
#define EM7180_RAMVersion1 0x72
#define EM7180_RAMVersion2 0x73
#define EM7180_ProductID 0x90
#define EM7180_RevisionID 0x91
#define EM7180_RunStatus 0x92
#define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB)
#define EM7180_UploadData 0x96
#define EM7180_CRCHost 0x97 // uint32_t from registers 0x97-9A
#define EM7180_ResetRequest 0x9B
#define EM7180_PassThruStatus 0x9E
#define EM7180_PassThruControl 0xA0
#define EM7180_ACC_LPF_BW 0x5B //Register GP36
#define EM7180_GYRO_LPF_BW 0x5C //Register GP37
#define EM7180_BARO_LPF_BW 0x5D //Register GP38
#define EM7180_GP36 0x5B
#define EM7180_GP37 0x5C
#define EM7180_GP38 0x5D
#define EM7180_GP39 0x5E
#define EM7180_GP40 0x5F
#define EM7180_GP50 0x69
#define EM7180_GP51 0x6A
#define EM7180_GP52 0x6B
#define EM7180_GP53 0x6C
#define EM7180_GP54 0x6D
#define EM7180_GP55 0x6E
#define EM7180_GP56 0x6F
#define EM7180_ADDRESS 0x28 // Address of the EM7180 SENtral sensor hub
#define M24512DFM_DATA_ADDRESS 0x50 // Address of the 500 page M24512DRC EEPROM data buffer, 1024 bits (128 8-bit bytes) per page
#define M24512DFM_IDPAGE_ADDRESS 0x58 // Address of the single M24512DRC lockable EEPROM ID page
#define MPU9250_ADDRESS 0x68 // Device address of MPU9250 when ADO = 0
#define AK8963_ADDRESS 0x0C // Address of magnetometer
#define BMP280_ADDRESS 0x76 // Address of BMP280 altimeter when ADO = 0
/*************************************************************************************************/
/************* ***************/
/************* Enumerators and Structure Variables ***************/
/************* ***************/
/*************************************************************************************************/
// Set initial input parameters
enum Ascale {
AFS_2G = 0,
AFS_4G,
AFS_8G,
AFS_16G
};
enum Gscale {
GFS_250DPS = 0,
GFS_500DPS,
GFS_1000DPS,
GFS_2000DPS
};
enum Mscale {
MFS_14BITS = 0, // 0.6 mG per LSB
MFS_16BITS // 0.15 mG per LSB
};
enum Posr {
P_OSR_00 = 0, // no op
P_OSR_01,
P_OSR_02,
P_OSR_04,
P_OSR_08,
P_OSR_16
};
enum Tosr {
T_OSR_00 = 0, // no op
T_OSR_01,
T_OSR_02,
T_OSR_04,
T_OSR_08,
T_OSR_16
};
enum IIRFilter {
full = 0, // bandwidth at full sample rate
BW0_223ODR,
BW0_092ODR,
BW0_042ODR,
BW0_021ODR // bandwidth at 0.021 x sample rate
};
enum Mode {
BMP280Sleep = 0,
forced,
forced2,
normal
};
enum SBy {
t_00_5ms = 0,
t_62_5ms,
t_125ms,
t_250ms,
t_500ms,
t_1000ms,
t_2000ms,
t_4000ms,
};
struct acc_cal
{
int16_t accZero_max[3];
int16_t accZero_min[3];
};
struct Sentral_WS_params
{
uint8_t Sen_param[35][4];
};
/*************************************************************************************************/
/************* ***************/
/************* Global Scope Variables ***************/
/************* ***************/
/*************************************************************************************************/
// General purpose variables
int16_t serial_input;
static int16_t warm_start = 0;
static int16_t accel_cal = 0;
static int16_t warm_start_saved = 0;
static int16_t accel_cal_saved = 0;
static uint16_t calibratingA = 0;
// Specify BMP280 configuration
uint8_t Posr = P_OSR_16;
uint8_t Tosr = T_OSR_02;
uint8_t Mode = normal;
uint8_t IIRFilter = BW0_042ODR;
uint8_t SBy = t_62_5ms;
// t_fine carries fine temperature as global value for BMP280
int32_t t_fine;
// Specify sensor full scale
uint8_t Gscale = GFS_250DPS;
uint8_t Ascale = AFS_2G;
// Choose either 14-bit or 16-bit magnetometer resolution
uint8_t Mscale = MFS_16BITS;
// 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
uint8_t Mmode = 0x02;
// scale resolutions per LSB for the sensors
float aRes;
float gRes;
float mRes;
// Pin definitions
// These can be changed, 2 and 3 are the Arduinos ext int pins
int intPin = 8;
// LED on the Teensy 3.1
int myLed = 13;
// BMP280 compensation parameters
uint16_t dig_T1;
uint16_t dig_P1;
int16_t dig_T2;
int16_t dig_T3;
int16_t dig_P2;
int16_t dig_P3;
int16_t dig_P4;
int16_t dig_P5;
int16_t dig_P6;
int16_t dig_P7;
int16_t dig_P8;
int16_t dig_P9;
// stores BMP280 pressures sensor pressure and temperature
double Temperature;
double Pressure;
// pressure and temperature raw count output for BMP280
int32_t rawPress;
int32_t rawTemp;
// MPU9250 variables
// Stores the 16-bit signed accelerometer sensor output
int16_t accelCount[3];
// Stores the 16-bit signed gyro sensor output
int16_t gyroCount[3];
// Stores the 16-bit signed magnetometer sensor output
int16_t magCount[3];
// quaternion data register
float Quat[4] = {0, 0, 0, 0};
// Factory mag calibration and mag bias
float magCalibration[3] = {0, 0, 0};
// Bias corrections for gyro, accelerometer, mag
float gyroBias[3] = {0, 0, 0};
float accelBias[3] = {0, 0, 0};
float magBias[3] = {0, 0, 0};
float magScale[3] = {0, 0, 0};
// Pressure, temperature raw count output
int16_t tempCount;
int16_t rawPressure;
int16_t rawTemperature;
// Stores the MPU9250 internal chip temperature in degrees Celsius
float temperature;
float pressure;
float altitude;
// holds results of gyro and accelerometer self test
float SelfTest[6];
// Global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
// Gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasError = PI * (40.0f / 180.0f);
// Gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
float GyroMeasDrift = PI * (0.0f / 180.0f);
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
// Compute beta
float beta = sqrt(3.0f / 4.0f) * GyroMeasError;
// Compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;
// Used to control display output rate
uint32_t delt_t = 0;
uint32_t count = 0;
uint32_t sumCount = 0;
float pitch;
float yaw;
float roll;
float Yaw;
float Pitch;
float Roll;
// Integration interval for both filter schemes
float deltat = 0.0f;
float sum = 0.0f;
// used to calculate integration interval
uint32_t lastUpdate = 0;
uint32_t firstUpdate = 0;
// used to calculate integration interval
uint32_t Now = 0;
// used for param transfer
uint8_t param[4];
// EM7180 sensor full scale ranges
uint16_t EM7180_mag_fs;
uint16_t EM7180_acc_fs;
uint16_t EM7180_gyro_fs;
// variables to hold latest sensor data values
float ax;
float ay;
float az;
float gx;
float gy;
float gz;
float mx;
float my;
float mz;
// Vector to hold quaternion
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};
// Vector to hold integral error for Mahony method
float eInt[3] = {0.0f, 0.0f, 0.0f};
acc_cal global_conf;
Sentral_WS_params WS_params;
#endif // Globals_h
Loading…
Cancel
Save