From 4ac2f8860f1fcfa632ca5343a0db3c76035a7c22 Mon Sep 17 00:00:00 2001 From: Daniel Peter Chokola Date: Mon, 18 Jan 2021 18:37:48 -0500 Subject: [PATCH] C-ify original Arduino C++ code; on the road to a clean compile --- Drivers/EM7180/Inc/em7180.h | 246 +--- Drivers/EM7180/Inc/lis2mdl.h | 28 +- Drivers/EM7180/Inc/lps22hb.h | 21 +- Drivers/EM7180/Inc/lsm6dsm.h | 35 +- Drivers/EM7180/Src/em7180.c | 2031 ++++++++++++++-------------------- Drivers/EM7180/Src/lis2mdl.c | 364 +++--- Drivers/EM7180/Src/lps22hb.c | 165 ++- Drivers/EM7180/Src/lsm6dsm.c | 499 +++++---- 8 files changed, 1357 insertions(+), 2032 deletions(-) diff --git a/Drivers/EM7180/Inc/em7180.h b/Drivers/EM7180/Inc/em7180.h index 2a109ca..f5c396b 100644 --- a/Drivers/EM7180/Inc/em7180.h +++ b/Drivers/EM7180/Inc/em7180.h @@ -18,164 +18,11 @@ /* Includes */ #include -// See MS5637-02BA03 Low Voltage Barometric Pressure Sensor Data Sheet -#define MS5637_RESET 0x1E -#define MS5637_CONVERT_D1 0x40 -#define MS5637_CONVERT_D2 0x50 -#define MS5637_ADC_READ 0x00 - -// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in -// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map -// -//Magnetometer Registers -#define AK8963_ADDRESS 0x0C -#define WHO_AM_I_AK8963 0x00 // should return 0x48 -#define INFO 0x01 -#define AK8963_ST1 0x02 // data ready status bit 0 -#define AK8963_XOUT_L 0x03 // data -#define AK8963_XOUT_H 0x04 -#define AK8963_YOUT_L 0x05 -#define AK8963_YOUT_H 0x06 -#define AK8963_ZOUT_L 0x07 -#define AK8963_ZOUT_H 0x08 -#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 -#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 -#define AK8963_ASTC 0x0C // Self test control -#define AK8963_I2CDIS 0x0F // I2C disable -#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value -#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value -#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value - -#define SELF_TEST_X_GYRO 0x00 -#define SELF_TEST_Y_GYRO 0x01 -#define SELF_TEST_Z_GYRO 0x02 - -/*#define X_FINE_GAIN 0x03 // [7:0] fine gain -#define Y_FINE_GAIN 0x04 -#define Z_FINE_GAIN 0x05 -#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer -#define XA_OFFSET_L_TC 0x07 -#define YA_OFFSET_H 0x08 -#define YA_OFFSET_L_TC 0x09 -#define ZA_OFFSET_H 0x0A -#define ZA_OFFSET_L_TC 0x0B */ - -#define SELF_TEST_X_ACCEL 0x0D -#define SELF_TEST_Y_ACCEL 0x0E -#define SELF_TEST_Z_ACCEL 0x0F - -#define SELF_TEST_A 0x10 - -#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope -#define XG_OFFSET_L 0x14 -#define YG_OFFSET_H 0x15 -#define YG_OFFSET_L 0x16 -#define ZG_OFFSET_H 0x17 -#define ZG_OFFSET_L 0x18 -#define SMPLRT_DIV 0x19 -#define CONFIG 0x1A -#define GYRO_CONFIG 0x1B -#define ACCEL_CONFIG 0x1C -#define ACCEL_CONFIG2 0x1D -#define LP_ACCEL_ODR 0x1E -#define WOM_THR 0x1F - -#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms -#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] -#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms - -#define FIFO_EN 0x23 -#define I2C_MST_CTRL 0x24 -#define I2C_SLV0_ADDR 0x25 -#define I2C_SLV0_REG 0x26 -#define I2C_SLV0_CTRL 0x27 -#define I2C_SLV1_ADDR 0x28 -#define I2C_SLV1_REG 0x29 -#define I2C_SLV1_CTRL 0x2A -#define I2C_SLV2_ADDR 0x2B -#define I2C_SLV2_REG 0x2C -#define I2C_SLV2_CTRL 0x2D -#define I2C_SLV3_ADDR 0x2E -#define I2C_SLV3_REG 0x2F -#define I2C_SLV3_CTRL 0x30 -#define I2C_SLV4_ADDR 0x31 -#define I2C_SLV4_REG 0x32 -#define I2C_SLV4_DO 0x33 -#define I2C_SLV4_CTRL 0x34 -#define I2C_SLV4_DI 0x35 -#define I2C_MST_STATUS 0x36 -#define INT_PIN_CFG 0x37 -#define INT_ENABLE 0x38 -#define DMP_INT_STATUS 0x39 // Check DMP interrupt -#define INT_STATUS 0x3A -#define ACCEL_XOUT_H 0x3B -#define ACCEL_XOUT_L 0x3C -#define ACCEL_YOUT_H 0x3D -#define ACCEL_YOUT_L 0x3E -#define ACCEL_ZOUT_H 0x3F -#define ACCEL_ZOUT_L 0x40 -#define TEMP_OUT_H 0x41 -#define TEMP_OUT_L 0x42 -#define GYRO_XOUT_H 0x43 -#define GYRO_XOUT_L 0x44 -#define GYRO_YOUT_H 0x45 -#define GYRO_YOUT_L 0x46 -#define GYRO_ZOUT_H 0x47 -#define GYRO_ZOUT_L 0x48 -#define EXT_SENS_DATA_00 0x49 -#define EXT_SENS_DATA_01 0x4A -#define EXT_SENS_DATA_02 0x4B -#define EXT_SENS_DATA_03 0x4C -#define EXT_SENS_DATA_04 0x4D -#define EXT_SENS_DATA_05 0x4E -#define EXT_SENS_DATA_06 0x4F -#define EXT_SENS_DATA_07 0x50 -#define EXT_SENS_DATA_08 0x51 -#define EXT_SENS_DATA_09 0x52 -#define EXT_SENS_DATA_10 0x53 -#define EXT_SENS_DATA_11 0x54 -#define EXT_SENS_DATA_12 0x55 -#define EXT_SENS_DATA_13 0x56 -#define EXT_SENS_DATA_14 0x57 -#define EXT_SENS_DATA_15 0x58 -#define EXT_SENS_DATA_16 0x59 -#define EXT_SENS_DATA_17 0x5A -#define EXT_SENS_DATA_18 0x5B -#define EXT_SENS_DATA_19 0x5C -#define EXT_SENS_DATA_20 0x5D -#define EXT_SENS_DATA_21 0x5E -#define EXT_SENS_DATA_22 0x5F -#define EXT_SENS_DATA_23 0x60 -#define MOT_DETECT_STATUS 0x61 -#define I2C_SLV0_DO 0x63 -#define I2C_SLV1_DO 0x64 -#define I2C_SLV2_DO 0x65 -#define I2C_SLV3_DO 0x66 -#define I2C_MST_DELAY_CTRL 0x67 -#define SIGNAL_PATH_RESET 0x68 -#define MOT_DETECT_CTRL 0x69 -#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP -#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode -#define PWR_MGMT_2 0x6C -#define DMP_BANK 0x6D // Activates a specific bank in the DMP -#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank -#define DMP_REG 0x6F // Register in DMP from which to read or to which to write -#define DMP_REG_1 0x70 -#define DMP_REG_2 0x71 -#define FIFO_COUNTH 0x72 -#define FIFO_COUNTL 0x73 -#define FIFO_R_W 0x74 -#define WHO_AM_I_MPU9250 0x75 // Should return 0x71 -#define XA_OFFSET_H 0x77 -#define XA_OFFSET_L 0x78 -#define YA_OFFSET_H 0x7A -#define YA_OFFSET_L 0x7B -#define ZA_OFFSET_H 0x7D -#define ZA_OFFSET_L 0x7E - -// EM7180 SENtral register map -// see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf -// +/* Definitions */ +/* + * EM7180 SENtral register map + * see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf + */ #define EM7180_QX 0x00 // this is a 32-bit normalized floating point number read from registers 0x00-03 #define EM7180_QY 0x04 // this is a 32-bit normalized floating point number read from registers 0x04-07 #define EM7180_QZ 0x08 // this is a 32-bit normalized floating point number read from registers 0x08-0B @@ -234,7 +81,7 @@ #define EM7180_ProductID 0x90 #define EM7180_RevisionID 0x91 #define EM7180_RunStatus 0x92 -#define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB) +#define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB) #define EM7180_UploadData 0x96 #define EM7180_CRCHost 0x97 // uint32_t from registers 0x97-9A #define EM7180_ResetRequest 0x9B @@ -247,9 +94,6 @@ #define EM7180_ADDRESS 0x28 // Address of the EM7180 SENtral sensor hub #define M24512DFM_DATA_ADDRESS 0x50 // Address of the 500 page M24512DFM EEPROM data buffer, 1024 bits (128 8-bit bytes) per page #define M24512DFM_IDPAGE_ADDRESS 0x58 // Address of the single M24512DFM lockable EEPROM ID page -#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0 -#define AK8963_ADDRESS 0x0C // Address of magnetometer -#define MS5637_ADDRESS 0x76 // Address of altimeter #define AFS_2G 0 #define AFS_4G 1 @@ -264,79 +108,9 @@ #define MFS_14BITS 0 // 0.6 mG per LSB #define MFS_16BITS 1 // 0.15 mG per LSB -#define ADC_256 0x00 // define pressure and temperature conversion rates -#define ADC_512 0x02 -#define ADC_1024 0x04 -#define ADC_2048 0x06 -#define ADC_4096 0x08 -#define ADC_8192 0x0A -#define ADC_D1 0x40 -#define ADC_D2 0x50 - -class USFS -{ - public: - USFS(uint8_t intPin, bool passThru); - float getAres(uint8_t Ascale); - float getGres(uint8_t Gscale); - float getMres(uint8_t Mscale); - float uint32_reg_to_float (uint8_t *buf); - float int32_reg_to_float (uint8_t *buf); - void float_to_bytes (float param_val, uint8_t *buf); - void EM7180_set_gyro_FS (uint16_t gyro_fs); - void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs); - void EM7180_set_integer_param (uint8_t param, uint32_t param_val); - void EM7180_set_float_param (uint8_t param, float param_val); - void readSENtralQuatData(float * destination); - void readSENtralAccelData(int16_t * destination); - void readSENtralGyroData(int16_t * destination); - void readSENtralMagData(int16_t * destination); - void readAccelData(int16_t * destination); - void readGyroData(int16_t * destination); - void readMagData(int16_t * destination); - int16_t readTempData(); - void initEM7180(uint8_t accBW, uint8_t gyroBW, uint16_t accFS, uint16_t gyroFS, uint16_t magFS, uint8_t QRtDiv, uint8_t magRt, uint8_t accRt, uint8_t gyroRt, uint8_t baroRt); - void initAK8963(uint8_t Mscale, uint8_t Mmode, float * destination); - void initMPU9250(uint8_t Ascale, uint8_t Gscale); - void accelgyrocalMPU9250(float * dest1, float * dest2); - void magcalMPU9250(float * dest1, float * dest2); - void MPU9250SelfTest(float * destination); - int16_t readSENtralBaroData(); - int16_t readSENtralTempData(); - void SENtralPassThroughMode(); - void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data); - void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest); - uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2); - void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest); - void MS5637Reset(); - void MS5637PromRead(uint16_t * destination); - uint32_t MS5637Read(uint8_t CMD, uint8_t OSR); - unsigned char MS5637checkCRC(uint16_t * n_prom); - void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz); - void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz); - void getChipID(); - void loadfwfromEEPROM(); - uint8_t checkEM7180Status(); - uint8_t checkEM7180Errors(); - void I2Cscan(); - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data); - uint8_t readByte(uint8_t address, uint8_t subAddress); - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest); - private: - uint8_t _intPin; - bool _passThru; - float _aRes; - float _gRes; - float _mRes; - uint8_t _Mmode; - float _fuseROMx; - float _fuseROMy; - float _fuseROMz; - float _q[4]; - float _beta; - float _deltat; - float _Kp; - float _Ki; -}; +/* Function Prototypes */ +void em7180_gyro_set_fs(uint16_t gyro_fs); +void em7180_mag_acc_set_fs(uint16_t mag_fs, uint16_t acc_fs); +void em7180_set_integer_param(uint8_t param, uint32_t param_val); #endif /* EM7180_H_ */ diff --git a/Drivers/EM7180/Inc/lis2mdl.h b/Drivers/EM7180/Inc/lis2mdl.h index dfecc03..98a1042 100644 --- a/Drivers/EM7180/Inc/lis2mdl.h +++ b/Drivers/EM7180/Inc/lis2mdl.h @@ -17,9 +17,10 @@ #ifndef LIS2MDL_h #define LIS2MDL_h -#include "Arduino.h" -#include +/* Includes */ +#include +/* Definitions */ //Register map for LIS2MDL' // http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/29/13/d1/e0/9a/4d/4f/30/DM00395193/files/DM00395193.pdf/jcr:content/translations/en.DM00395193.pdf #define LIS2MDL_OFFSET_X_REG_L 0x45 @@ -53,27 +54,4 @@ #define MODR_50Hz 0x02 #define MODR_100Hz 0x03 - -class LIS2MDL -{ - public: - LIS2MDL(uint8_t intPin); - uint8_t getChipID(); - void init(uint8_t MODR); - void offsetBias(float * dest1, float * dest2); - void reset(); - void selfTest(); - uint8_t status(); - void readData(int16_t * destination); - int16_t readTemperature(); - void I2Cscan(); - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data); - uint8_t readByte(uint8_t address, uint8_t subAddress); - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest); - private: - uint8_t _intPin; - float _mRes; - -}; - #endif diff --git a/Drivers/EM7180/Inc/lps22hb.h b/Drivers/EM7180/Inc/lps22hb.h index bba1ff1..86c3615 100644 --- a/Drivers/EM7180/Inc/lps22hb.h +++ b/Drivers/EM7180/Inc/lps22hb.h @@ -17,8 +17,8 @@ #ifndef LPS22HB_h #define LPS22HB_h -#include "Arduino.h" -#include "Wire.h" +/* Includes */ +#include // See LPS22H "MEMS pressure sensor: 260-1260 hPa absolute digital output barometer" Data Sheet // http://www.st.com/content/ccc/resource/technical/document/datasheet/bf/c1/4f/23/61/17/44/8a/DM00140895.pdf/files/DM00140895.pdf/jcr:content/translations/en.DM00140895.pdf @@ -56,21 +56,4 @@ #define P_50Hz 0x04; #define P_75Hz 0x05; -class LPS22H -{ - public: - LPS22H(uint8_t intPin); - void Init(uint8_t PODR); - uint8_t getChipID(); - uint8_t status(); - int32_t readAltimeterPressure(); - int16_t readAltimeterTemperature(); - void I2Cscan(); - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data); - uint8_t readByte(uint8_t address, uint8_t subAddress); - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest); - private: - uint8_t _intPin; -}; - #endif diff --git a/Drivers/EM7180/Inc/lsm6dsm.h b/Drivers/EM7180/Inc/lsm6dsm.h index 1d10f65..8fbcbc4 100644 --- a/Drivers/EM7180/Inc/lsm6dsm.h +++ b/Drivers/EM7180/Inc/lsm6dsm.h @@ -17,12 +17,13 @@ #ifndef LSM6DSM_h #define LSM6DSM_h -#include "Arduino.h" -#include +/* Includes */ +#include -/* LSM6DSM registers - http://www.st.com/content/ccc/resource/technical/document/datasheet/76/27/cf/88/c5/03/42/6b/DM00218116.pdf/files/DM00218116.pdf/jcr:content/translations/en.DM00218116.pdf -*/ +/* + * LSM6DSM registers + * http://www.st.com/content/ccc/resource/technical/document/datasheet/76/27/cf/88/c5/03/42/6b/DM00218116.pdf/files/DM00218116.pdf/jcr:content/translations/en.DM00218116.pdf + */ #define LSM6DSM_FUNC_CFG_ACCESS 0x01 #define LSM6DSM_SENSOR_SYNC_TIME_FRAME 0x04 #define LSM6DSM_SENSOR_SYNC_RES_RATIO 0x05 @@ -157,28 +158,4 @@ #define GODR_3330Hz 0x09 #define GODR_6660Hz 0x0A - -class LSM6DSM -{ - public: - LSM6DSM(uint8_t intPin1, uint8_t intPin2); - float getAres(uint8_t Ascale); - float getGres(uint8_t Gscale); - uint8_t getChipID(); - void init(uint8_t Ascale, uint8_t Gscale, uint8_t AODR, uint8_t GODR); - void offsetBias(float * dest1, float * dest2); - void reset(); - void selfTest(); - void readData(int16_t * destination); - void I2Cscan(); - void writeByte(uint8_t address, uint8_t subAddress, uint8_t data); - uint8_t readByte(uint8_t address, uint8_t subAddress); - void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest); - private: - uint8_t _intPin1; - uint8_t _intPin2; - float _aRes, _gRes; - -}; - #endif diff --git a/Drivers/EM7180/Src/em7180.c b/Drivers/EM7180/Src/em7180.c index 7581595..779b059 100644 --- a/Drivers/EM7180/Src/em7180.c +++ b/Drivers/EM7180/Src/em7180.c @@ -13,1257 +13,916 @@ */ /* Includes */ +#include +#include #include "em7180.h" -USFS::USFS(uint8_t intPin, bool passThru) +/* Private Global Variables */ +static uint8_t _intPin; +static bool _passThru; +static float _aRes; +static float _gRes; +static float _mRes; +static uint8_t _Mmode; +static float _fuseROMx; +static float _fuseROMy; +static float _fuseROMz; +static float _q[4]; +static float _beta; +static float _deltat; +static float _Kp; +static float _Ki; + +/* Function Prototypes */ +static void m24512dfm_write_byte(uint8_t device_address, uint8_t data_address1, + uint8_t data_address2, uint8_t data); +static void m24512dfm_write(uint8_t device_address, uint8_t data_address1, + uint8_t data_address2, uint8_t count, uint8_t *dest); +static uint8_t m24512dfm_read_byte(uint8_t device_address, + uint8_t data_address1, uint8_t data_address2); +static void m24512dfm_read(uint8_t device_address, uint8_t data_address1, + uint8_t data_address2, uint8_t count, uint8_t *dest); +static uint8_t em7180_read_byte(uint8_t address, uint8_t subAddress); +static void em7180_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest); + +/* Function Definitions */ +em7180_new(uint8_t pin, bool passthru) { - pinMode(intPin, INPUT); - _intPin = intPin; - _passThru = passThru; + pinMode(pin, INPUT); + _intPin = pin; + _passThru = passthru; } -void USFS::getChipID() +void em7180_chip_id_get() { - // Read SENtral device information - uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1); - uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2); - Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609"); - uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1); - uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2); - Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2); - uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID); - Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80"); - uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID); - Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02"); -} - - void USFS::loadfwfromEEPROM() - { - // Check which sensors can be detected by the EM7180 - uint8_t featureflag = readByte(EM7180_ADDRESS, EM7180_FeatureFlags); - if(featureflag & 0x01) Serial.println("A barometer is installed"); - if(featureflag & 0x02) Serial.println("A humidity sensor is installed"); - if(featureflag & 0x04) Serial.println("A temperature sensor is installed"); - if(featureflag & 0x08) Serial.println("A custom sensor is installed"); - if(featureflag & 0x10) Serial.println("A second custom sensor is installed"); - if(featureflag & 0x20) Serial.println("A third custom sensor is installed"); - - delay(1000); // give some time to read the screen - - // Check SENtral status, make sure EEPROM upload of firmware was accomplished - byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); - int count = 0; - while(!STAT) { - writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); - delay(500); - count++; - STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); - if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); - if(count > 10) break; - } - - if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!"); - } - - uint8_t USFS::checkEM7180Status(){ - // Check event status register, way to check data ready by polling rather than interrupt - uint8_t c = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt - return c; - } - - uint8_t USFS::checkEM7180Errors(){ - uint8_t c = readByte(EM7180_ADDRESS, EM7180_ErrorRegister); // check error register - return c; - } - - void USFS::initEM7180(uint8_t accBW, uint8_t gyroBW, uint16_t accFS, uint16_t gyroFS, uint16_t magFS, uint8_t QRtDiv, uint8_t magRt, uint8_t accRt, uint8_t gyroRt, uint8_t baroRt) - { - uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges - uint8_t param[4]; - - // Enter EM7180 initialized state - writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers - writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off - writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize - writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers - - //Setup LPF bandwidth (BEFORE setting ODR's) - writeByte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz - writeByte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz - // Set accel/gyro/mag desired ODR rates - writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, QRtDiv); // quat rate = gyroRt/(1 QRTDiv) - writeByte(EM7180_ADDRESS, EM7180_MagRate, magRt); // 0x64 = 100 Hz - writeByte(EM7180_ADDRESS, EM7180_AccelRate, accRt); // 200/10 Hz, 0x14 = 200 Hz - writeByte(EM7180_ADDRESS, EM7180_GyroRate, gyroRt); // 200/10 Hz, 0x14 = 200 Hz - writeByte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | baroRt); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz - - // Configure operating mode - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data - // Enable interrupt to host upon certain events - // choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), - // new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) - writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); - // Enable EM7180 run mode - writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode - delay(100); - - // EM7180 parameter adjustments - Serial.println("Beginning Parameter Adjustments"); - - // Read sensor default FS values from parameter space - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process - byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - while(!(param_xfer==0x4A)) { - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); - param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); - param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); - param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); - EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); - EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); - Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); - Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - while(!(param_xfer==0x4B)) { - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); - param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); - param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); - param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); - EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); - Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm - - //Disable stillness mode for balancing robot application - EM7180_set_integer_param (0x49, 0x00); - - //Write desired sensor full scale ranges to the EM7180 - EM7180_set_mag_acc_FS (magFS, accFS); // 1000 uT == 0x3E8, 8 g == 0x08 - EM7180_set_gyro_FS (gyroFS); // 2000 dps == 0x7D0 - - // Read sensor new FS values from parameter space - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - while(!(param_xfer==0x4A)) { - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); - param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); - param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); - param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); - EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); - EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); - Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); - Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - while(!(param_xfer==0x4B)) { - param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); - param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); - param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); - param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); - EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); - Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm - - -// Read EM7180 status -uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus); -if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode"); -uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); -if(algoStatus & 0x01) Serial.println(" EM7180 standby status"); -if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow"); -if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode"); -if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed"); -if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected"); -if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data"); -uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); -if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!"); -uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); -if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset"); -if(eventStatus & 0x02) Serial.println(" EM7180 Error"); -if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result"); -if(eventStatus & 0x08) Serial.println(" EM7180 new mag result"); -if(eventStatus & 0x10) Serial.println(" EM7180 new accel result"); -if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); - - delay(1000); // give some time to read the screen - - // Check sensor status - uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus); - Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus); - if(sensorStatus & 0x01) Serial.print("Magnetometer not acknowledging!"); - if(sensorStatus & 0x02) Serial.print("Accelerometer not acknowledging!"); - if(sensorStatus & 0x04) Serial.print("Gyro not acknowledging!"); - if(sensorStatus & 0x10) Serial.print("Magnetometer ID not recognized!"); - if(sensorStatus & 0x20) Serial.print("Accelerometer ID not recognized!"); - if(sensorStatus & 0x40) Serial.print("Gyro ID not recognized!"); - - Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz"); - Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz"); - Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz"); - Serial.print("Actual BaroRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualBaroRate)); Serial.println(" Hz"); -} - -float USFS::uint32_reg_to_float (uint8_t *buf) + // Read SENtral device information + uint16_t ROM1 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ROMVersion1); + uint16_t ROM2 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ROMVersion2); + Serial.print("EM7180 ROM Version: 0x"); + Serial.print(ROM1, HEX); + Serial.println(ROM2, HEX); + Serial.println("Should be: 0xE609"); + uint16_t RAM1 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RAMVersion1); + uint16_t RAM2 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RAMVersion2); + Serial.print("EM7180 RAM Version: 0x"); + Serial.print(RAM1); + Serial.println(RAM2); + uint8_t PID = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ProductID); + Serial.print("EM7180 ProductID: 0x"); + Serial.print(PID, HEX); + Serial.println(" Should be: 0x80"); + uint8_t RID = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RevisionID); + Serial.print("EM7180 RevisionID: 0x"); + Serial.print(RID, HEX); + Serial.println(" Should be: 0x02"); +} + +void em7180_load_fw_from_eeprom() { - union { - uint32_t ui32; - float f; - } u; - - u.ui32 = (((uint32_t)buf[0]) + - (((uint32_t)buf[1]) << 8) + - (((uint32_t)buf[2]) << 16) + - (((uint32_t)buf[3]) << 24)); - return u.f; -} - -float USFS::int32_reg_to_float (uint8_t *buf) + // Check which sensors can be detected by the EM7180 + uint8_t featureflag = lsm6dsm_read_byte(EM7180_ADDRESS, + EM7180_FeatureFlags); + if(featureflag & 0x01) + Serial.println("A barometer is installed"); + if(featureflag & 0x02) + Serial.println("A humidity sensor is installed"); + if(featureflag & 0x04) + Serial.println("A temperature sensor is installed"); + if(featureflag & 0x08) + Serial.println("A custom sensor is installed"); + if(featureflag & 0x10) + Serial.println("A second custom sensor is installed"); + if(featureflag & 0x20) + Serial.println("A third custom sensor is installed"); + + delay(1000); // give some time to read the screen + + // Check SENtral status, make sure EEPROM upload of firmware was accomplished + byte STAT = (lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) + Serial.println("EEPROM detected on the sensor bus!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) + Serial.println("EEPROM uploaded config file!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) + Serial.println("EEPROM CRC incorrect!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) + Serial.println("EM7180 in initialized state!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) + Serial.println("No EEPROM detected!"); + int count = 0; + while(!STAT) + { + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); + delay(500); + count++; + STAT = (lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) + Serial.println("EEPROM detected on the sensor bus!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) + Serial.println("EEPROM uploaded config file!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) + Serial.println("EEPROM CRC incorrect!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) + Serial.println("EM7180 in initialized state!"); + if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) + Serial.println("No EEPROM detected!"); + if(count > 10) + break; + } + + if(!(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) + Serial.println("EEPROM upload successful!"); +} + +uint8_t em7180_status() { - union { - int32_t i32; - float f; - } u; - - u.i32 = (((int32_t)buf[0]) + - (((int32_t)buf[1]) << 8) + - (((int32_t)buf[2]) << 16) + - (((int32_t)buf[3]) << 24)); - return u.f; -} - -void USFS::float_to_bytes (float param_val, uint8_t *buf) { - union { - float f; - uint8_t comp[sizeof(float)]; - } u; - u.f = param_val; - for (uint8_t i=0; i < sizeof(float); i++) { - buf[i] = u.comp[i]; - } - //Convert to LITTLE ENDIAN - for (uint8_t i=0; i < sizeof(float); i++) { - buf[i] = buf[(sizeof(float)-1) - i]; - } + // Check event status register, way to check data ready by polling rather than interrupt + uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt + return c; } -void USFS::EM7180_set_gyro_FS (uint16_t gyro_fs) { - uint8_t bytes[4], STAT; - bytes[0] = gyro_fs & (0xFF); - bytes[1] = (gyro_fs >> 8) & (0xFF); - bytes[2] = 0x00; - bytes[3] = 0x00; - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte - while(!(STAT==0xCB)) { - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm -} - -void USFS::EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) { - uint8_t bytes[4], STAT; - bytes[0] = mag_fs & (0xFF); - bytes[1] = (mag_fs >> 8) & (0xFF); - bytes[2] = acc_fs & (0xFF); - bytes[3] = (acc_fs >> 8) & (0xFF); - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte - while(!(STAT==0xCA)) { - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +uint8_t em7180_errors() +{ + uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ErrorRegister); // check error register + return c; } -void USFS::EM7180_set_integer_param (uint8_t param, uint32_t param_val) { - uint8_t bytes[4], STAT; - bytes[0] = param_val & (0xFF); - bytes[1] = (param_val >> 8) & (0xFF); - bytes[2] = (param_val >> 16) & (0xFF); - bytes[3] = (param_val >> 24) & (0xFF); - param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte - while(!(STAT==param)) { - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm -} +void em7180_init(uint8_t accBW, uint8_t gyroBW, uint16_t accFS, uint16_t gyroFS, + uint16_t magFS, uint8_t QRtDiv, uint8_t magRt, uint8_t accRt, + uint8_t gyroRt, uint8_t baroRt) +{ + uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges + uint8_t param[4]; + + // Enter EM7180 initialized state + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers + + //Setup LPF bandwidth (BEFORE setting ODR's) + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz + // Set accel/gyro/mag desired ODR rates + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_QRateDivisor, QRtDiv); // quat rate = gyroRt/(1 QRTDiv) + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_MagRate, magRt); // 0x64 = 100 Hz + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AccelRate, accRt); // 200/10 Hz, 0x14 = 200 Hz + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_GyroRate, gyroRt); // 200/10 Hz, 0x14 = 200 Hz + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | baroRt); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz + + // Configure operating mode + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data + // Enable interrupt to host upon certain events + // choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), + // new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); + // Enable EM7180 run mode + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode + delay(100); + + // EM7180 parameter adjustments + Serial.println("Beginning Parameter Adjustments"); + + // Read sensor default FS values from parameter space + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process + byte param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, + EM7180_ParamAcknowledge); + while(!(param_xfer == 0x4A)) + { + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_mag_fs = ((int16_t) (param[1] << 8) | param[0]); + EM7180_acc_fs = ((int16_t) (param[3] << 8) | param[2]); + Serial.print("Magnetometer Default Full Scale Range: +/-"); + Serial.print(EM7180_mag_fs); + Serial.println("uT"); + Serial.print("Accelerometer Default Full Scale Range: +/-"); + Serial.print(EM7180_acc_fs); + Serial.println("g"); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer == 0x4B)) + { + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_gyro_fs = ((int16_t) (param[1] << 8) | param[0]); + Serial.print("Gyroscope Default Full Scale Range: +/-"); + Serial.print(EM7180_gyro_fs); + Serial.println("dps"); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm + + //Disable stillness mode for balancing robot application + EM7180_set_integer_param(0x49, 0x00); + + //Write desired sensor full scale ranges to the EM7180 + EM7180_set_mag_acc_FS(magFS, accFS); // 1000 uT == 0x3E8, 8 g == 0x08 + EM7180_set_gyro_FS(gyroFS); // 2000 dps == 0x7D0 + + // Read sensor new FS values from parameter space + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer == 0x4A)) + { + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_mag_fs = ((int16_t) (param[1] << 8) | param[0]); + EM7180_acc_fs = ((int16_t) (param[3] << 8) | param[2]); + Serial.print("Magnetometer New Full Scale Range: +/-"); + Serial.print(EM7180_mag_fs); + Serial.println("uT"); + Serial.print("Accelerometer New Full Scale Range: +/-"); + Serial.print(EM7180_acc_fs); + Serial.println("g"); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer == 0x4B)) + { + param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_gyro_fs = ((int16_t) (param[1] << 8) | param[0]); + Serial.print("Gyroscope New Full Scale Range: +/-"); + Serial.print(EM7180_gyro_fs); + Serial.println("dps"); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm + + // Read EM7180 status + uint8_t runStatus = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RunStatus); + if(runStatus & 0x01) + Serial.println(" EM7180 run status = normal mode"); + uint8_t algoStatus = lsm6dsm_read_byte(EM7180_ADDRESS, + EM7180_AlgorithmStatus); + if(algoStatus & 0x01) + Serial.println(" EM7180 standby status"); + if(algoStatus & 0x02) + Serial.println(" EM7180 algorithm slow"); + if(algoStatus & 0x04) + Serial.println(" EM7180 in stillness mode"); + if(algoStatus & 0x08) + Serial.println(" EM7180 mag calibration completed"); + if(algoStatus & 0x10) + Serial.println(" EM7180 magnetic anomaly detected"); + if(algoStatus & 0x20) + Serial.println(" EM7180 unreliable sensor data"); + uint8_t passthruStatus = lsm6dsm_read_byte(EM7180_ADDRESS, + EM7180_PassThruStatus); + if(passthruStatus & 0x01) + Serial.print(" EM7180 in passthru mode!"); + uint8_t eventStatus = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_EventStatus); + if(eventStatus & 0x01) + Serial.println(" EM7180 CPU reset"); + if(eventStatus & 0x02) + Serial.println(" EM7180 Error"); + if(eventStatus & 0x04) + Serial.println(" EM7180 new quaternion result"); + if(eventStatus & 0x08) + Serial.println(" EM7180 new mag result"); + if(eventStatus & 0x10) + Serial.println(" EM7180 new accel result"); + if(eventStatus & 0x20) + Serial.println(" EM7180 new gyro result"); + + delay(1000); // give some time to read the screen + + // Check sensor status + uint8_t sensorStatus = lsm6dsm_read_byte(EM7180_ADDRESS, + EM7180_SensorStatus); + Serial.print(" EM7180 sensor status = "); + Serial.println(sensorStatus); + if(sensorStatus & 0x01) + Serial.print("Magnetometer not acknowledging!"); + if(sensorStatus & 0x02) + Serial.print("Accelerometer not acknowledging!"); + if(sensorStatus & 0x04) + Serial.print("Gyro not acknowledging!"); + if(sensorStatus & 0x10) + Serial.print("Magnetometer ID not recognized!"); + if(sensorStatus & 0x20) + Serial.print("Accelerometer ID not recognized!"); + if(sensorStatus & 0x40) + Serial.print("Gyro ID not recognized!"); + + Serial.print("Actual MagRate = "); + Serial.print(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualMagRate)); + Serial.println(" Hz"); + Serial.print("Actual AccelRate = "); + Serial.print( + 10 * lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualAccelRate)); + Serial.println(" Hz"); + Serial.print("Actual GyroRate = "); + Serial.print(10 * lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualGyroRate)); + Serial.println(" Hz"); + Serial.print("Actual BaroRate = "); + Serial.print(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualBaroRate)); + Serial.println(" Hz"); +} + +float em7180_uint32_reg_to_float(uint8_t *buf) +{ + union + { + uint32_t ui32; + float f; + } u; -void USFS::EM7180_set_float_param (uint8_t param, float param_val) { - uint8_t bytes[4], STAT; - float_to_bytes (param_val, &bytes[0]); - param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); - writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte - while(!(STAT==param)) { - STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); - } - writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process - writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm + u.ui32 = (((uint32_t) buf[0]) + (((uint32_t) buf[1]) << 8) + + (((uint32_t) buf[2]) << 16) + (((uint32_t) buf[3]) << 24)); + return u.f; } - -void USFS::readSENtralQuatData(float * destination) +float em7180_int32_reg_to_float(uint8_t *buf) { - uint8_t rawData[16]; // x/y/z quaternion register data stored here - readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array - destination[1] = uint32_reg_to_float (&rawData[0]); - destination[2] = uint32_reg_to_float (&rawData[4]); - destination[3] = uint32_reg_to_float (&rawData[8]); - destination[0] = uint32_reg_to_float (&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! + union + { + int32_t i32; + float f; + } u; + u.i32 = (((int32_t) buf[0]) + (((int32_t) buf[1]) << 8) + + (((int32_t) buf[2]) << 16) + (((int32_t) buf[3]) << 24)); + return u.f; } -void USFS::readSENtralAccelData(int16_t * destination) +void em7180_float_to_bytes(float param_val, uint8_t *buf) { - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); - destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); -} - -void USFS::readSENtralGyroData(int16_t * destination) + union + { + float f; + uint8_t comp[sizeof(float)]; + } u; + u.f = param_val; + for(uint8_t i = 0; i < sizeof(float); i++) + { + buf[i] = u.comp[i]; + } + //Convert to LITTLE ENDIAN + for(uint8_t i = 0; i < sizeof(float); i++) + { + buf[i] = buf[(sizeof(float) - 1) - i]; + } +} + +void em7180_gyro_set_fs(uint16_t gyro_fs) { - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); - destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); -} - -void USFS::readSENtralMagData(int16_t * destination) + uint8_t bytes[4], STAT; + bytes[0] = gyro_fs & (0xFF); + bytes[1] = (gyro_fs >> 8) & (0xFF); + bytes[2] = 0x00; + bytes[3] = 0x00; + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT == 0xCB)) + { + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void em7180_mag_acc_set_fs(uint16_t mag_fs, uint16_t acc_fs) { - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value - destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); - destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); -} - -float USFS::getMres(uint8_t Mscale) { - switch (Mscale) - { - // Possible magnetometer scales (and their register bit settings) are: - // 14 bit resolution (0) and 16 bit resolution (1) - case MFS_14BITS: - _mRes = 10.*4912./8190.; // Proper scale to return milliGauss - return _mRes; - break; - case MFS_16BITS: - _mRes = 10.*4912./32760.0; // Proper scale to return milliGauss - return _mRes; - break; - } -} - -float USFS::getGres(uint8_t Gscale) { - switch (Gscale) - { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case GFS_250DPS: - _gRes = 250.0/32768.0; - return _gRes; - break; - case GFS_500DPS: - _gRes = 500.0/32768.0; - return _gRes; - break; - case GFS_1000DPS: - _gRes = 1000.0/32768.0; - return _gRes; - break; - case GFS_2000DPS: - _gRes = 2000.0/32768.0; - return _gRes; - break; - } -} - -float USFS::getAres(uint8_t Ascale) { - switch (Ascale) - { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - _aRes = 2.0/32768.0; - return _aRes; - break; - case AFS_4G: - _aRes = 4.0/32768.0; - return _aRes; - break; - case AFS_8G: - _aRes = 8.0/32768.0; - return _aRes; - break; - case AFS_16G: - _aRes = 16.0/32768.0; - return _aRes; - break; - } -} - - -void USFS::readAccelData(int16_t * destination) + uint8_t bytes[4], STAT; + bytes[0] = mag_fs & (0xFF); + bytes[1] = (mag_fs >> 8) & (0xFF); + bytes[2] = acc_fs & (0xFF); + bytes[3] = (acc_fs >> 8) & (0xFF); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT == 0xCA)) + { + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void em7180_set_integer_param(uint8_t param, uint32_t param_val) { - uint8_t rawData[6]; // x/y/z accel register data stored here - readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array - destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; - destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; -} - - -void USFS::readGyroData(int16_t * destination) + uint8_t bytes[4], STAT; + bytes[0] = param_val & (0xFF); + bytes[1] = (param_val >> 8) & (0xFF); + bytes[2] = (param_val >> 16) & (0xFF); + bytes[3] = (param_val >> 24) & (0xFF); + param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, param); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT == param)) + { + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void em7180_param_set_float(uint8_t param, float param_val) { - uint8_t rawData[6]; // x/y/z gyro register data stored here - readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array - destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; - destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; -} - -void USFS::readMagData(int16_t * destination) + uint8_t bytes[4], STAT; + float_to_bytes(param_val, &bytes[0]); + param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, param); + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT == param)) + { + STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void em7180_quatdata_get(float *destination) { - uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition - if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set - readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array - uint8_t c = rawData[6]; // End data read by reading ST2 register - if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data - destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian - destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; - } - } -} + uint8_t rawData[16]; // x/y/z quaternion register data stored here + em7180_read(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array + destination[1] = uint32_reg_to_float(&rawData[0]); + destination[2] = uint32_reg_to_float(&rawData[4]); + destination[3] = uint32_reg_to_float(&rawData[8]); + destination[0] = uint32_reg_to_float(&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! -int16_t USFS::readTempData() -{ - uint8_t rawData[2]; // x/y/z gyro register data stored here - readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array - return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value } -void USFS::initAK8963(uint8_t Mscale, uint8_t Mmode, float * destination) +void em7180_acceldata_get(int16_t *destination) { - _Mmode = Mmode; - // First extract the factory calibration for each magnetometer axis - uint8_t rawData[3]; // x/y/z gyro calibration data stored here - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer - delay(20); - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode - delay(20); - readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values - destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc. - destination[1] = (float)(rawData[1] - 128)/256. + 1.; - destination[2] = (float)(rawData[2] - 128)/256. + 1.; - _fuseROMx = destination[0]; - _fuseROMy = destination[1]; - _fuseROMz = destination[2]; - writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer - delay(20); - // Configure the magnetometer for continuous read and highest resolution - // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, - // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates - writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR - delay(20); + uint8_t rawData[6]; // x/y/z accel register data stored here + em7180_read(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); } - -void USFS::initMPU9250(uint8_t Ascale, uint8_t Gscale) +void em7180_gyrodata_get(int16_t *destination) { - // wake up device - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors - delay(100); // Wait for all registers to reset - - // get stable time source - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else - delay(200); - - // Configure Gyro and Thermometer - // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; - // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot - // be higher than 1 / 0.0059 = 170 Hz - // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both - // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz - writeByte(MPU9250_ADDRESS, CONFIG, 0x03); - - // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate - // determined inset in CONFIG above - - // Set gyroscope full scale range - // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 - uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value - // c = c & ~0xE0; // Clear self-test bits [7:5] - c = c & ~0x02; // Clear Fchoice bits [1:0] - c = c & ~0x18; // Clear AFS bits [4:3] - c = c | Gscale << 3; // Set full scale range for the gyro - // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register - - // Set accelerometer full-scale range configuration - c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value - // c = c & ~0xE0; // Clear self-test bits [7:5] - c = c & ~0x18; // Clear AFS bits [4:3] - c = c | Ascale << 3; // Set full scale range for the accelerometer - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value - - // Set accelerometer sample rate configuration - // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for - // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz - c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value - c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) - c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value - - // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, - // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting - - // Configure Interrupts and Bypass Enable - // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared, - // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips - // can join the I2C bus and all can be controlled by the Arduino as master - writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); - writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt - delay(100); + uint8_t rawData[6]; // x/y/z gyro register data stored here + em7180_read(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); } - -// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average -// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. -void USFS::accelgyrocalMPU9250(float * dest1, float * dest2) +void em7180_magdata_get(int16_t *destination) { - uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data - uint16_t ii, packet_count, fifo_count; - int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; - - // reset device - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device - delay(100); - - // get stable time source; Auto select clock source to be PLL gyroscope reference if ready - // else use the internal oscillator, bits 2:0 = 001 - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); - writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); - delay(200); - -// Configure device for bias calculation - writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO - writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source - writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP - delay(15); - -// Configure MPU6050 gyro and accelerometer for bias calculation - writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity - writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity - - uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec - uint16_t accelsensitivity = 16384; // = 16384 LSB/g - -// Configure FIFO to capture accelerometer and gyro data for bias calculation - writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) - delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes - -// At end of sample accumulation, turn off FIFO sensor read - writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO - readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count - fifo_count = ((uint16_t)data[0] << 8) | data[1]; - packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging - - for (ii = 0; ii < packet_count; ii++) { - int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; - readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging - accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO - accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; - accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; - gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; - gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; - gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; - - accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases - accel_bias[1] += (int32_t) accel_temp[1]; - accel_bias[2] += (int32_t) accel_temp[2]; - gyro_bias[0] += (int32_t) gyro_temp[0]; - gyro_bias[1] += (int32_t) gyro_temp[1]; - gyro_bias[2] += (int32_t) gyro_temp[2]; - -} - accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases - accel_bias[1] /= (int32_t) packet_count; - accel_bias[2] /= (int32_t) packet_count; - gyro_bias[0] /= (int32_t) packet_count; - gyro_bias[1] /= (int32_t) packet_count; - gyro_bias[2] /= (int32_t) packet_count; - - if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation - else {accel_bias[2] += (int32_t) accelsensitivity;} - -// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup - data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format - data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases - data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; - data[3] = (-gyro_bias[1]/4) & 0xFF; - data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; - data[5] = (-gyro_bias[2]/4) & 0xFF; - -// Push gyro biases to hardware registers - writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); - writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); - writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); - writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); - writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); - writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); - -// Output scaled gyro biases for display in the main program - dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; - dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; - dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; - -// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain -// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold -// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature -// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that -// the accelerometer biases calculated above must be divided by 8. - - int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases - readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values - accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]); - readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); - accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]); - readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); - accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]); - - uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers - uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis - - for(ii = 0; ii < 3; ii++) { - if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit - } - - // Construct total accelerometer bias, including calculated average accelerometer bias from above - accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) - accel_bias_reg[1] -= (accel_bias[1]/8); - accel_bias_reg[2] -= (accel_bias[2]/8); - - data[0] = (accel_bias_reg[0] >> 8) & 0xFE; - data[1] = (accel_bias_reg[0]) & 0xFE; - data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[2] = (accel_bias_reg[1] >> 8) & 0xFE; - data[3] = (accel_bias_reg[1]) & 0xFE; - data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers - data[4] = (accel_bias_reg[2] >> 8) & 0xFE; - data[5] = (accel_bias_reg[2]) & 0xFE; - data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers - -// Apparently this is not working for the acceleration biases in the MPU-9250 -// Are we handling the temperature correction bit properly? -// Push accelerometer biases to hardware registers -/* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); - writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); - writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); - writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); - writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); - writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); -*/ -// Output scaled accelerometer biases for display in the main program - dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; - dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; - dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; + uint8_t rawData[6]; // x/y/z gyro register data stored here + em7180_read(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); } - -void USFS::magcalMPU9250(float * dest1, float * dest2) +float em7180_mres_get(uint8_t Mscale) { - uint16_t ii = 0, sample_count = 0; - int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0}; - int16_t mag_max[3] = {0x8000, 0x8000, 0x8000}, mag_min[3] = {0x7FFF, 0x7FFF, 0x7FFF}, mag_temp[3] = {0, 0, 0}; - - Serial.println("Mag Calibration: Wave device in a figure eight until done!"); - delay(4000); - - if(_Mmode == 0x02) sample_count = 128; - if(_Mmode == 0x06) sample_count = 1500; - for(ii = 0; ii < sample_count; ii++) { - readMagData(mag_temp); // Read the mag data - for (int jj = 0; jj < 3; jj++) { - if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; - if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; - } - if(_Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms - if(_Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms - } - -// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]); -// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]); -// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); - - // Get hard iron correction - mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts - mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts - mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts - - dest1[0] = (float) mag_bias[0]*_mRes*_fuseROMx; // save mag biases in G for main program - dest1[1] = (float) mag_bias[1]*_mRes*_fuseROMy; - dest1[2] = (float) mag_bias[2]*_mRes*_fuseROMz; - - // Get soft iron correction estimate - mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts - mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts - mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts - - float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; - avg_rad /= 3.0; - - dest2[0] = avg_rad/((float)mag_scale[0]); - dest2[1] = avg_rad/((float)mag_scale[1]); - dest2[2] = avg_rad/((float)mag_scale[2]); - - Serial.println("Mag Calibration done!"); -} - - - - -// Accelerometer and gyroscope self test; check calibration wrt factory settings -void USFS::MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass + switch(Mscale) + { + // Possible magnetometer scales (and their register bit settings) are: + // 14 bit resolution (0) and 16 bit resolution (1) + case MFS_14BITS: + _mRes = 10. * 4912. / 8190.; // Proper scale to return milliGauss + return _mRes; + break; + case MFS_16BITS: + _mRes = 10. * 4912. / 32760.0; // Proper scale to return milliGauss + return _mRes; + break; + } +} + +float em7180_gres_get(uint8_t gscale) { - uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; - uint8_t selfTest[6]; - int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; - float factoryTrim[6]; - uint8_t FS = 0; - - writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz - writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz - writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1< 128) - { - count = 128; - Serial.print("Page count cannot be more than 128 bytes!"); - } - uint8_t temp[2] = {data_address1, data_address2}; - Wire.transfer(device_address, &temp[0], 2, NULL, 0); - Wire.transfer(device_address, &dest[0], count, NULL, 0); - } - - - uint8_t USFS::M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2) + if(count > 128) + { + count = 128; + Serial.print("Page count cannot be more than 128 bytes!"); + } + uint8_t temp[2] = { data_address1, data_address2 }; + Wire.transfer(device_address, &temp[0], 2, NULL, 0); + Wire.transfer(device_address, &dest[0], count, NULL, 0); +} + +static uint8_t m24512dfm_read_byte(uint8_t device_address, + uint8_t data_address1, uint8_t data_address2) { - uint8_t data; // `data` will store the register data - Wire.beginTransmission(device_address); // Initialize the Tx buffer - Wire.write(data_address1); // Put slave register address in Tx buffer - Wire.write(data_address2); // Put slave register address in Tx buffer - Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive - Wire.requestFrom(device_address, 1); // Read one byte from slave register address - data = Wire.read(); // Fill Rx buffer with result - return data; // Return data read from slave register + uint8_t data; // `data` will store the register data + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(device_address, 1); // Read one byte from slave register address + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register +} + +static void m24512dfm_read(uint8_t device_address, uint8_t data_address1, + uint8_t data_address2, uint8_t count, uint8_t *dest) +{ + uint8_t temp[2] = { data_address1, data_address2 }; + Wire.transfer(device_address, &temp[0], 2, dest, count); } - void USFS::M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) - { - uint8_t temp[2] = {data_address1, data_address2}; - Wire.transfer(device_address, &temp[0], 2, dest, count); - } - - -// I2C communication with the MS5637 is a little different from that with the MPU9250 and most other sensors -// For the MS5637, we write commands, and the MS5637 sends data in response, rather than directly reading -// MS5637 registers - - void USFS::MS5637Reset() - { - uint8_t temp[1] = {MS5637_RESET}; - Wire.transfer(MS5637_ADDRESS, &temp[0], 1, NULL, 0); - } - - void USFS::MS5637PromRead(uint16_t * destination) - { - uint8_t data[2] = {0,0}; - uint8_t temp[1]; - for (uint8_t ii = 0; ii < 7; ii++) { - temp[0] = 0xA0 | ii << 1; - Wire.transfer(MS5637_ADDRESS, &temp[0], 1, data, 2); - destination[ii] = (uint16_t) (((uint16_t) data[0] << 8) | data[1]); // construct PROM data for return to main program - } - } - - uint32_t USFS::MS5637Read(uint8_t CMD, uint8_t OSR) // temperature data read - { - uint8_t data[3] = {0,0,0}; - uint8_t temp[2] = {CMD | OSR, 0x00}; // Put pressure conversion, ADC read commands in Tx buffer - Wire.transfer(MS5637_ADDRESS, &temp[0], 1, NULL, 0); - - switch (OSR) - { - case ADC_256: delay(1); break; // delay for conversion to complete - case ADC_512: delay(3); break; - case ADC_1024: delay(4); break; - case ADC_2048: delay(6); break; - case ADC_4096: delay(10); break; - case ADC_8192: delay(20); break; - } - - Wire.transfer(MS5637_ADDRESS, &temp[1], 1, data, 3); - return (uint32_t) (((uint32_t) data[0] << 16) | (uint32_t) data[1] << 8 | data[2]); // construct PROM data for return to main program - } - - - -unsigned char USFS::MS5637checkCRC(uint16_t * n_prom) // calculate checksum from PROM register contents +// I2C read/write functions for the EM7180 +void em7180_write_byte(uint8_t address, uint8_t subAddress, uint8_t data) { - int cnt; - unsigned int n_rem = 0; - unsigned char n_bit; - - n_prom[0] = ((n_prom[0]) & 0x0FFF); // replace CRC byte by 0 for checksum calculation - n_prom[7] = 0; - for(cnt = 0; cnt < 16; cnt++) - { - if(cnt%2==1) n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF); - else n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8); - for(n_bit = 8; n_bit > 0; n_bit--) - { - if(n_rem & 0x8000) n_rem = (n_rem<<1) ^ 0x3000; - else n_rem = (n_rem<<1); - } - } - n_rem = ((n_rem>>12) & 0x000F); - return (n_rem ^ 0x00); + uint8_t temp[2]; + temp[0] = subAddress; + temp[1] = data; + Wire.transfer(address, &temp[0], 2, NULL, 0); } - -void USFS::I2Cscan() +static uint8_t em7180_read_byte(uint8_t address, uint8_t subAddress) { -// scan for i2c devices - byte error, address; - int nDevices; - - Serial.println("Scanning..."); - - nDevices = 0; - for(address = 1; address < 127; address++ ) - { - // The i2c_scanner uses the return value of - // the Write.endTransmisstion to see if - // a device did acknowledge to the address. - error = Wire.transfer(address, NULL, 0, NULL, 0); - - if (error == 0) - { - Serial.print("I2C device found at address 0x"); - if (address<16) - Serial.print("0"); - Serial.print(address,HEX); - Serial.println(" !"); - - nDevices++; - } - else if (error==4) - { - Serial.print("Unknown error at address 0x"); - if (address<16) - Serial.print("0"); - Serial.println(address,HEX); - } - } - if (nDevices == 0) - Serial.println("No I2C devices found\n"); - else - Serial.println("done\n"); + uint8_t temp[1]; + Wire.transfer(address, &subAddress, 1, &temp[0], 1); + return temp[0]; } +static void em7180_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest) +{ + Wire.transfer(address, &subAddress, 1, dest, count); +} - // I2C read/write functions for the MPU9250 sensors - - void USFS::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) - { - uint8_t temp[2]; - temp[0] = subAddress; - temp[1] = data; - Wire.transfer(address, &temp[0], 2, NULL, 0); - } - - uint8_t USFS::readByte(uint8_t address, uint8_t subAddress) - { - uint8_t temp[1]; - Wire.transfer(address, &subAddress, 1, &temp[0], 1); - return temp[0]; - } - - void USFS::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) - { - Wire.transfer(address, &subAddress, 1, dest, count); - } - - // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" +// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! -__attribute__((optimize("O3"))) void USFS::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) - { - float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability - float norm; - float hx, hy, _2bx, _2bz; - float s1, s2, s3, s4; - float qDot1, qDot2, qDot3, qDot4; - - // Auxiliary variables to avoid repeated arithmetic - float _2q1mx; - float _2q1my; - float _2q1mz; - float _2q2mx; - float _4bx; - float _4bz; - float _2q1 = 2.0f * q1; - float _2q2 = 2.0f * q2; - float _2q3 = 2.0f * q3; - float _2q4 = 2.0f * q4; - float _2q1q3 = 2.0f * q1 * q3; - float _2q3q4 = 2.0f * q3 * q4; - float q1q1 = q1 * q1; - float q1q2 = q1 * q2; - float q1q3 = q1 * q3; - float q1q4 = q1 * q4; - float q2q2 = q2 * q2; - float q2q3 = q2 * q3; - float q2q4 = q2 * q4; - float q3q3 = q3 * q3; - float q3q4 = q3 * q4; - float q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f/norm; - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - _2q1mx = 2.0f * q1 * mx; - _2q1my = 2.0f * q1 * my; - _2q1mz = 2.0f * q1 * mz; - _2q2mx = 2.0f * q2 * mx; - hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; - hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; - _2bx = sqrt(hx * hx + hy * hy); - _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; - _4bx = 2.0f * _2bx; - _4bz = 2.0f * _2bz; - - // Gradient decent algorithm corrective step - s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); - norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude - norm = 1.0f/norm; - s1 *= norm; - s2 *= norm; - s3 *= norm; - s4 *= norm; - - // Compute rate of change of quaternion - qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - _beta * s1; - qDot2 = 0.5f * ( q1 * gx + q3 * gz - q4 * gy) - _beta * s2; - qDot3 = 0.5f * ( q1 * gy - q2 * gz + q4 * gx) - _beta * s3; - qDot4 = 0.5f * ( q1 * gz + q2 * gy - q3 * gx) - _beta * s4; - - // Integrate to yield quaternion - q1 += qDot1 * _deltat; - q2 += qDot2 * _deltat; - q3 += qDot3 * _deltat; - q4 += qDot4 * _deltat; - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion - norm = 1.0f/norm; - _q[0] = q1 * norm; - _q[1] = q2 * norm; - _q[2] = q3 * norm; - _q[3] = q4 * norm; - - } - - - - // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and - // measured ones. - void USFS::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) - { - float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability - float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method - float norm; - float hx, hy, bx, bz; - float vx, vy, vz, wx, wy, wz; - float ex, ey, ez; - float pa, pb, pc; - - // Auxiliary variables to avoid repeated arithmetic - float q1q1 = q1 * q1; - float q1q2 = q1 * q2; - float q1q3 = q1 * q3; - float q1q4 = q1 * q4; - float q2q2 = q2 * q2; - float q2q3 = q2 * q3; - float q2q4 = q2 * q4; - float q3q3 = q3 * q3; - float q3q4 = q3 * q4; - float q4q4 = q4 * q4; - - // Normalise accelerometer measurement - norm = sqrt(ax * ax + ay * ay + az * az); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f / norm; // use reciprocal for division - ax *= norm; - ay *= norm; - az *= norm; - - // Normalise magnetometer measurement - norm = sqrt(mx * mx + my * my + mz * mz); - if (norm == 0.0f) return; // handle NaN - norm = 1.0f / norm; // use reciprocal for division - mx *= norm; - my *= norm; - mz *= norm; - - // Reference direction of Earth's magnetic field - hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); - hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); - bx = sqrt((hx * hx) + (hy * hy)); - bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); - - // Estimated direction of gravity and magnetic field - vx = 2.0f * (q2q4 - q1q3); - vy = 2.0f * (q1q2 + q3q4); - vz = q1q1 - q2q2 - q3q3 + q4q4; - wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); - wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); - wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); - - // Error is cross product between estimated direction and measured direction of gravity - ex = (ay * vz - az * vy) + (my * wz - mz * wy); - ey = (az * vx - ax * vz) + (mz * wx - mx * wz); - ez = (ax * vy - ay * vx) + (mx * wy - my * wx); - if (_Ki > 0.0f) - { - eInt[0] += ex; // accumulate integral error - eInt[1] += ey; - eInt[2] += ez; - } - else - { - eInt[0] = 0.0f; // prevent integral wind up - eInt[1] = 0.0f; - eInt[2] = 0.0f; - } - - // Apply feedback terms - gx = gx + _Kp * ex + _Ki * eInt[0]; - gy = gy + _Kp * ey + _Ki * eInt[1]; - gz = gz + _Kp * ez + _Ki * eInt[2]; - - // Integrate rate of change of quaternion - pa = q2; - pb = q3; - pc = q4; - q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * _deltat); - q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * _deltat); - q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * _deltat); - q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * _deltat); - - // Normalise quaternion - norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); - norm = 1.0f / norm; - _q[0] = q1 * norm; - _q[1] = q2 * norm; - _q[2] = q3 * norm; - _q[3] = q4 * norm; - - } +__attribute__((optimize("O3"))) void em7180_update_quat_madgwick(float ax, + float ay, + float az, + float gx, + float gy, + float gz, + float mx, + float my, + float mz) +{ + float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability + float norm; + float hx, hy, _2bx, _2bz; + float s1, s2, s3, s4; + float qDot1, qDot2, qDot3, qDot4; + + // Auxiliary variables to avoid repeated arithmetic + float _2q1mx; + float _2q1my; + float _2q1mz; + float _2q2mx; + float _4bx; + float _4bz; + float _2q1 = 2.0f * q1; + float _2q2 = 2.0f * q2; + float _2q3 = 2.0f * q3; + float _2q4 = 2.0f * q4; + float _2q1q3 = 2.0f * q1 * q3; + float _2q3q4 = 2.0f * q3 * q4; + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalize accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if(norm == 0.0f) + return; // handle NaN + norm = 1.0f / norm; + ax *= norm; + ay *= norm; + az *= norm; + + // Normalize magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + if(norm == 0.0f) + return; // handle NaN + norm = 1.0f / norm; + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + _2q1mx = 2.0f * q1 * mx; + _2q1my = 2.0f * q1 * my; + _2q1mz = 2.0f * q1 * mz; + _2q2mx = 2.0f * q2 * mx; + hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + + _2q2 * mz * q4 + - mx * q3q3 - mx * q4q4; + hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + + my * q3q3 + _2q3 * mz * q4 + - my * q4q4; + _2bx = sqrt(hx * hx + hy * hy); + _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + + _2q3 * my * q4 + - mz * q3q3 + + mz * q4q4; + _4bx = 2.0f * _2bx; + _4bz = 2.0f * _2bz; + + // Gradient decent algorithm corrective step + s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) + - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + + _2bz * (q1q2 + q3q4) + - my) + + _2bx * q3 + * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) + - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + + _2bz * (q1q2 + q3q4) + - my) + + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + + _2bz * (0.5f - q2q2 - q3q3) + - mz); + s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) + - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + + _2bz * (q2q4 - q1q3) + - mx) + + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + + _2bz * (q1q2 + q3q4) + - my) + + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + + _2bz * (0.5f - q2q2 - q3q3) + - mz); + s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + + _2bz * (q2q4 - q1q3) + - mx) + + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + + _2bz * (q1q2 + q3q4) + - my) + + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); + norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalize step magnitude + norm = 1.0f / norm; + s1 *= norm; + s2 *= norm; + s3 *= norm; + s4 *= norm; + + // Compute rate of change of quaternion + qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - _beta * s1; + qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - _beta * s2; + qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - _beta * s3; + qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - _beta * s4; + + // Integrate to yield quaternion + q1 += qDot1 * _deltat; + q2 += qDot2 * _deltat; + q3 += qDot3 * _deltat; + q4 += qDot4 * _deltat; + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalize quaternion + norm = 1.0f / norm; + _q[0] = q1 * norm; + _q[1] = q2 * norm; + _q[2] = q3 * norm; + _q[3] = q4 * norm; + +} + +// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and +// measured ones. +void em7180_update_quat_mahony(float ax, float ay, float az, float gx, float gy, + float gz, float mx, float my, float mz) +{ + float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability + float eInt[3] = { 0.0f, 0.0f, 0.0f }; // vector to hold integral error for Mahony method + float norm; + float hx, hy, bx, bz; + float vx, vy, vz, wx, wy, wz; + float ex, ey, ez; + float pa, pb, pc; + + // Auxiliary variables to avoid repeated arithmetic + float q1q1 = q1 * q1; + float q1q2 = q1 * q2; + float q1q3 = q1 * q3; + float q1q4 = q1 * q4; + float q2q2 = q2 * q2; + float q2q3 = q2 * q3; + float q2q4 = q2 * q4; + float q3q3 = q3 * q3; + float q3q4 = q3 * q4; + float q4q4 = q4 * q4; + + // Normalize accelerometer measurement + norm = sqrt(ax * ax + ay * ay + az * az); + if(norm == 0.0f) + return; // handle NaN + norm = 1.0f / norm; // use reciprocal for division + ax *= norm; + ay *= norm; + az *= norm; + + // Normalize magnetometer measurement + norm = sqrt(mx * mx + my * my + mz * mz); + if(norm == 0.0f) + return; // handle NaN + norm = 1.0f / norm; // use reciprocal for division + mx *= norm; + my *= norm; + mz *= norm; + + // Reference direction of Earth's magnetic field + hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + + 2.0f * mz * (q2q4 + q1q3); + hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + + 2.0f * mz * (q3q4 - q1q2); + bx = sqrt((hx * hx) + (hy * hy)); + bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + + 2.0f * mz * (0.5f - q2q2 - q3q3); + + // Estimated direction of gravity and magnetic field + vx = 2.0f * (q2q4 - q1q3); + vy = 2.0f * (q1q2 + q3q4); + vz = q1q1 - q2q2 - q3q3 + q4q4; + wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); + wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); + wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); + + // Error is cross product between estimated direction and measured direction of gravity + ex = (ay * vz - az * vy) + (my * wz - mz * wy); + ey = (az * vx - ax * vz) + (mz * wx - mx * wz); + ez = (ax * vy - ay * vx) + (mx * wy - my * wx); + if(_Ki > 0.0f) + { + eInt[0] += ex; // accumulate integral error + eInt[1] += ey; + eInt[2] += ez; + } + else + { + eInt[0] = 0.0f; // prevent integral wind up + eInt[1] = 0.0f; + eInt[2] = 0.0f; + } + + // Apply feedback terms + gx = gx + _Kp * ex + _Ki * eInt[0]; + gy = gy + _Kp * ey + _Ki * eInt[1]; + gz = gz + _Kp * ez + _Ki * eInt[2]; + + // Integrate rate of change of quaternion + pa = q2; + pb = q3; + pc = q4; + q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * _deltat); + q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * _deltat); + q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * _deltat); + q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * _deltat); + + // Normalize quaternion + norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); + norm = 1.0f / norm; + _q[0] = q1 * norm; + _q[1] = q2 * norm; + _q[2] = q3 * norm; + _q[3] = q4 * norm; + +} diff --git a/Drivers/EM7180/Src/lis2mdl.c b/Drivers/EM7180/Src/lis2mdl.c index beed34e..8d59ae8 100644 --- a/Drivers/EM7180/Src/lis2mdl.c +++ b/Drivers/EM7180/Src/lis2mdl.c @@ -14,236 +14,212 @@ * Library may be used freely and without limit with attribution. */ +/* Includes */ +#include #include "lis2mdl.h" -LIS2MDL::LIS2MDL(uint8_t intPin) -{ - pinMode(intPin, INPUT); - _intPin = intPin; -} +/* Private Global Variables */ +static uint8_t _intPin; +static float _mRes; +/* Function Prototypes */ +static void lis2mdl_write_byte(uint8_t address, uint8_t subAddress, + uint8_t data); +static uint8_t lis2mdl_read_byte(uint8_t address, uint8_t subAddress); +static void lis2mdl_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest); -uint8_t LIS2MDL::getChipID() +/* Function Definitions */ +lis2mdl_new(uint8_t pin) { - uint8_t c = readByte(LIS2MDL_ADDRESS, LIS2MDL_WHO_AM_I); - return c; + pinMode(pin, INPUT); + _intPin = pin; } +uint8_t lis2mdl_chip_id_get() +{ + uint8_t c = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_WHO_AM_I); + return c; +} -void LIS2MDL::reset() +void lis2mdl_reset() { - // reset device - uint8_t temp = readByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A); - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x20); // Set bit 5 to 1 to reset LIS2MDL - delay(1); - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x40); // Set bit 6 to 1 to boot LIS2MDL - delay(100); // Wait for all registers to reset + // reset device + uint8_t temp = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A); + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x20); // Set bit 5 to 1 to reset LIS2MDL + delay(1); + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x40); // Set bit 6 to 1 to boot LIS2MDL + delay(100); // Wait for all registers to reset } -void LIS2MDL::init(uint8_t MODR) +void lis2mdl_init(uint8_t MODR) { - - // enable temperature compensation (bit 7 == 1), continuous mode (bits 0:1 == 00) - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, 0x80 | MODR<<2); - // enable low pass filter (bit 0 == 1), set to ODR/4 - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_B, 0x01); + // enable temperature compensation (bit 7 == 1), continuous mode (bits 0:1 == 00) + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, 0x80 | MODR << 2); - // enable data ready on interrupt pin (bit 0 == 1), enable block data read (bit 4 == 1) - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, 0x01 | 0x10); + // enable low pass filter (bit 0 == 1), set to ODR/4 + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_B, 0x01); -} + // enable data ready on interrupt pin (bit 0 == 1), enable block data read (bit 4 == 1) + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, 0x01 | 0x10); +} -uint8_t LIS2MDL::status() +uint8_t lis2mdl_status() { - // Read the status register of the altimeter - uint8_t temp = readByte(LIS2MDL_ADDRESS, LIS2MDL_STATUS_REG); - return temp; + // Read the status register of the altimeter + uint8_t temp = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_STATUS_REG); + return temp; } - -void LIS2MDL::readData(int16_t * destination) +void lis2mdl_data_get(int16_t *destination) { - uint8_t rawData[6]; // x/y/z mag register data stored here - readBytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_OUTX_L_REG), 8, &rawData[0]); // Read the 6 raw data registers into data array + uint8_t rawData[6]; // x/y/z mag register data stored here + lis2mdl_read_bytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_OUTX_L_REG), 8, + &rawData[0]); // Read the 6 raw data registers into data array - destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; - destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; + destination[0] = ((int16_t) rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t) rawData[3] << 8) | rawData[2]; + destination[2] = ((int16_t) rawData[5] << 8) | rawData[4]; } - -int16_t LIS2MDL::readTemperature() +int16_t lis2mdl_temp_get() { - uint8_t rawData[2]; // x/y/z mag register data stored here - readBytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_TEMP_OUT_L_REG), 2, &rawData[0]); // Read the 8 raw data registers into data array + uint8_t rawData[2]; // x/y/z mag register data stored here + lis2mdl_read_bytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_TEMP_OUT_L_REG), 2, + &rawData[0]); // Read the 8 raw data registers into data array - int16_t temp = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value - return temp; + int16_t temp = ((int16_t) rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value + return temp; } - -void LIS2MDL::offsetBias(float * dest1, float * dest2) +void lis2mdl_offset_bias(float *dest1, float *dest2) { - int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0}; - int16_t mag_max[3] = {-32767, -32767, -32767}, mag_min[3] = {32767, 32767, 32767}, mag_temp[3] = {0, 0, 0}; - float _mRes = 0.0015f; - - Serial.println("Calculate mag offset bias: move all around to sample the complete response surface!"); - delay(4000); - - for (int ii = 0; ii < 4000; ii++) - { - readData(mag_temp); - for (int jj = 0; jj < 3; jj++) { - if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; - if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; - } - delay(12); - } - - _mRes = 0.0015f; // fixed sensitivity - // Get hard iron correction - mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts - mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts - mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts - - dest1[0] = (float) mag_bias[0] * _mRes; // save mag biases in G for main program - dest1[1] = (float) mag_bias[1] * _mRes; - dest1[2] = (float) mag_bias[2] * _mRes; - - // Get soft iron correction estimate - mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts - mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts - mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts - - float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; - avg_rad /= 3.0f; - - dest2[0] = avg_rad/((float)mag_scale[0]); - dest2[1] = avg_rad/((float)mag_scale[1]); - dest2[2] = avg_rad/((float)mag_scale[2]); - - Serial.println("Mag Calibration done!"); + int32_t mag_bias[3] = { 0, 0, 0 }, mag_scale[3] = { 0, 0, 0 }; + int16_t mag_max[3] = { -32767, -32767, -32767 }, mag_min[3] = + { 32767, 32767, 32767 }, mag_temp[3] = { 0, 0, 0 }; + float _mRes = 0.0015f; + + Serial.println( + "Calculate mag offset bias: move all around to sample the complete response surface!"); + delay(4000); + + for(int ii = 0; ii < 4000; ii++) + { + lis2mdl_data_get(mag_temp); + for(int jj = 0; jj < 3; jj++) + { + if(mag_temp[jj] > mag_max[jj]) + mag_max[jj] = mag_temp[jj]; + if(mag_temp[jj] < mag_min[jj]) + mag_min[jj] = mag_temp[jj]; + } + delay(12); + } + + _mRes = 0.0015f; // fixed sensitivity + // Get hard iron correction + mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts + mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts + mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts + + dest1[0] = (float) mag_bias[0] * _mRes; // save mag biases in G for main program + dest1[1] = (float) mag_bias[1] * _mRes; + dest1[2] = (float) mag_bias[2] * _mRes; + + // Get soft iron correction estimate + mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts + mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts + mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts + + float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; + avg_rad /= 3.0f; + + dest2[0] = avg_rad / ((float) mag_scale[0]); + dest2[1] = avg_rad / ((float) mag_scale[1]); + dest2[2] = avg_rad / ((float) mag_scale[2]); + + Serial.println("Mag Calibration done!"); } -void LIS2MDL::selfTest() +void lis2mdl_self_test() { - int16_t temp[3] = {0, 0, 0}; - float magTest[3] = {0., 0., 0.}; - float magNom[3] = {0., 0., 0.}; - int32_t sum[3] = {0, 0, 0}; - float _mRes = 0.0015f; - - // first, get average response with self test disabled - for (int ii = 0; ii < 50; ii++) - { - readData(temp); - sum[0] += temp[0]; - sum[1] += temp[1]; - sum[2] += temp[2]; - delay(50); - } - - magNom[0] = (float) sum[0] / 50.0f; - magNom[1] = (float) sum[1] / 50.0f; - magNom[2] = (float) sum[2] / 50.0f; - - uint8_t c = readByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C); - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c | 0x02); // enable self test - delay(100); // let mag respond - - sum[0] = 0; - sum[1] = 0; - sum[2] = 0; - for (int ii = 0; ii < 50; ii++) - { - readData(temp); - sum[0] += temp[0]; - sum[1] += temp[1]; - sum[2] += temp[2]; - delay(50); - } - - magTest[0] = (float) sum[0] / 50.0f; - magTest[1] = (float) sum[1] / 50.0f; - magTest[2] = (float) sum[2] / 50.0f; - - writeByte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c); // return to previous settings/normal mode - delay(100); // let mag respond - - Serial.println("Mag Self Test:"); - Serial.print("Mx results:"); Serial.print( (magTest[0] - magNom[0]) * _mRes * 1000.0); Serial.println(" mG"); - Serial.print("My results:"); Serial.println((magTest[0] - magNom[0]) * _mRes * 1000.0); - Serial.print("Mz results:"); Serial.println((magTest[1] - magNom[1]) * _mRes * 1000.0); - Serial.println("Should be between 15 and 500 mG"); - delay(2000); // give some time to read the screen + int16_t temp[3] = { 0, 0, 0 }; + float magTest[3] = { 0., 0., 0. }; + float magNom[3] = { 0., 0., 0. }; + int32_t sum[3] = { 0, 0, 0 }; + float _mRes = 0.0015f; + + // first, get average response with self test disabled + for(int ii = 0; ii < 50; ii++) + { + lis2mdl_data_get(temp); + sum[0] += temp[0]; + sum[1] += temp[1]; + sum[2] += temp[2]; + delay(50); + } + + magNom[0] = (float) sum[0] / 50.0f; + magNom[1] = (float) sum[1] / 50.0f; + magNom[2] = (float) sum[2] / 50.0f; + + uint8_t c = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C); + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c | 0x02); // enable self test + delay(100); // let mag respond + + sum[0] = 0; + sum[1] = 0; + sum[2] = 0; + for(int ii = 0; ii < 50; ii++) + { + lis2mdl_data_get(temp); + sum[0] += temp[0]; + sum[1] += temp[1]; + sum[2] += temp[2]; + delay(50); + } + + magTest[0] = (float) sum[0] / 50.0f; + magTest[1] = (float) sum[1] / 50.0f; + magTest[2] = (float) sum[2] / 50.0f; + + lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c); // return to previous settings/normal mode + delay(100); // let mag respond + + Serial.println("Mag Self Test:"); + Serial.print("Mx results:"); + Serial.print((magTest[0] - magNom[0]) * _mRes * 1000.0); + Serial.println(" mG"); + Serial.print("My results:"); + Serial.println((magTest[0] - magNom[0]) * _mRes * 1000.0); + Serial.print("Mz results:"); + Serial.println((magTest[1] - magNom[1]) * _mRes * 1000.0); + Serial.println("Should be between 15 and 500 mG"); + delay(2000); // give some time to read the screen } +// I2C read/write functions for the LIS2MDL -// I2C scan function -void LIS2MDL::I2Cscan() +static void lis2mdl_write_byte(uint8_t address, uint8_t subAddress, + uint8_t data) { -// scan for i2c devices - byte error, address; - int nDevices; - - Serial.println("Scanning..."); - - nDevices = 0; - for(address = 1; address < 127; address++ ) - { - // The i2c_scanner uses the return value of - // the Write.endTransmission to see if - // a device did acknowledge to the address. -// Wire.beginTransmission(address); -// error = Wire.endTransmission(); - error = Wire.transfer(address, NULL, 0, NULL, 0); - - if (error == 0) - { - Serial.print("I2C device found at address 0x"); - if (address<16) - Serial.print("0"); - Serial.print(address,HEX); - Serial.println(" !"); - - nDevices++; - } - else if (error==4) - { - Serial.print("Unknown error at address 0x"); - if (address<16) - Serial.print("0"); - Serial.println(address,HEX); - } - } - if (nDevices == 0) - Serial.println("No I2C devices found\n"); - else - Serial.println("done\n"); - + uint8_t temp[2]; + temp[0] = subAddress; + temp[1] = data; + Wire.transfer(address, &temp[0], 2, NULL, 0); } +static uint8_t lis2mdl_read_byte(uint8_t address, uint8_t subAddress) +{ + uint8_t temp[1]; + Wire.transfer(address, &subAddress, 1, &temp[0], 1); + return temp[0]; +} -// I2C read/write functions for the LIS2MDL - - void LIS2MDL::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { - uint8_t temp[2]; - temp[0] = subAddress; - temp[1] = data; - Wire.transfer(address, &temp[0], 2, NULL, 0); - } - - - uint8_t LIS2MDL::readByte(uint8_t address, uint8_t subAddress) { - uint8_t temp[1]; - Wire.transfer(address, &subAddress, 1, &temp[0], 1); - return temp[0]; - } - - - void LIS2MDL::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { - Wire.transfer(address, &subAddress, 1, dest, count); - } +static void lis2mdl_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest) +{ + Wire.transfer(address, &subAddress, 1, dest, count); +} diff --git a/Drivers/EM7180/Src/lps22hb.c b/Drivers/EM7180/Src/lps22hb.c index 463969e..c685a2f 100644 --- a/Drivers/EM7180/Src/lps22hb.c +++ b/Drivers/EM7180/Src/lps22hb.c @@ -14,124 +14,95 @@ * Library may be used freely and without limit with attribution. */ +/* Includes */ +#include #include "lps22hb.h" -#include "Wire.h" -LPS22H::LPS22H(uint8_t intPin) +/* Private Global Variables */ +static uint8_t _intPin; + +/* Function Prototypes */ +static void lps22h_write_byte(uint8_t address, uint8_t subAddress, uint8_t data); +static uint8_t lps22h_read_byte(uint8_t address, uint8_t subAddress); +static void lps22h_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest); + +/* Function Definitions */ +lps22h_new(uint8_t pin) { - pinMode(intPin, INPUT); - _intPin = intPin; + pinMode(pin, INPUT); + _intPin = pin; } -uint8_t LPS22H::getChipID() +uint8_t lps22h_getChipID() { - // Read the WHO_AM_I register of the altimeter this is a good test of communication - uint8_t temp = readByte(LPS22H_ADDRESS, LPS22H_WHOAMI); // Read WHO_AM_I register for LPS22H - return temp; + // Read the WHO_AM_I register of the altimeter this is a good test of communication + uint8_t temp = lps22h_read_byte(LPS22H_ADDRESS, LPS22H_WHOAMI); // Read WHO_AM_I register for LPS22H + return temp; } -uint8_t LPS22H::status() +uint8_t lps22h_status() { - // Read the status register of the altimeter - uint8_t temp = readByte(LPS22H_ADDRESS, LPS22H_STATUS); - return temp; + // Read the status register of the altimeter + uint8_t temp = lps22h_read_byte(LPS22H_ADDRESS, LPS22H_STATUS); + return temp; } -int32_t LPS22H::readAltimeterPressure() +int32_t lps22h_pressure_get() { - uint8_t rawData[3]; // 24-bit pressure register data stored here - readBytes(LPS22H_ADDRESS, (LPS22H_PRESS_OUT_XL | 0x80), 3, &rawData[0]); // bit 7 must be one to read multiple bytes - return (int32_t) ((int32_t) rawData[2] << 16 | (int32_t) rawData[1] << 8 | rawData[0]); + uint8_t rawData[3]; // 24-bit pressure register data stored here + lps22h_read(LPS22H_ADDRESS, (LPS22H_PRESS_OUT_XL | 0x80), 3, &rawData[0]); // bit 7 must be one to read multiple bytes + return (int32_t) ((int32_t) rawData[2] << 16 | (int32_t) rawData[1] << 8 + | rawData[0]); } -int16_t LPS22H::readAltimeterTemperature() +int16_t lps22h_temp_get() { - uint8_t rawData[2]; // 16-bit pressure register data stored here - readBytes(LPS22H_ADDRESS, (LPS22H_TEMP_OUT_L | 0x80), 2, &rawData[0]); // bit 7 must be one to read multiple bytes - return (int16_t)((int16_t) rawData[1] << 8 | rawData[0]); + uint8_t rawData[2]; // 16-bit pressure register data stored here + lps22h_read(LPS22H_ADDRESS, (LPS22H_TEMP_OUT_L | 0x80), 2, &rawData[0]); // bit 7 must be one to read multiple bytes + return (int16_t) ((int16_t) rawData[1] << 8 | rawData[0]); } - -void LPS22H::Init(uint8_t PODR) +void lps22h_init(uint8_t PODR) { - // set sample rate by setting bits 6:4 - // enable low-pass filter by setting bit 3 to one - // bit 2 == 0 means bandwidth is odr/9, bit 2 == 1 means bandwidth is odr/20 - // make sure data not updated during read by setting block data udate (bit 1) to 1 - writeByte(LPS22H_ADDRESS, LPS22H_CTRL_REG1, PODR << 4 | 0x08 | 0x02); - writeByte(LPS22H_ADDRESS, LPS22H_CTRL_REG3, 0x04); // enable data ready as interrupt source + // set sample rate by setting bits 6:4 + // enable low-pass filter by setting bit 3 to one + // bit 2 == 0 means bandwidth is odr/9, bit 2 == 1 means bandwidth is odr/20 + // make sure data not updated during read by setting block data udate (bit 1) to 1 + lps22h_write_byte(LPS22H_ADDRESS, LPS22H_CTRL_REG1, + PODR << 4 | 0x08 | 0x02); + lps22h_write_byte(LPS22H_ADDRESS, LPS22H_CTRL_REG3, 0x04); // enable data ready as interrupt source } -// I2C scan function -void LPS22H::I2Cscan() +static void lps22h_write_byte(uint8_t address, uint8_t subAddress, uint8_t data) { -// scan for i2c devices - byte error, address; - int nDevices; - - Serial.println("Scanning..."); - - nDevices = 0; - for(address = 1; address < 127; address++ ) - { - // The i2c_scanner uses the return value of - // the Write.endTransmission to see if - // a device did acknowledge to the address. - Wire.beginTransmission(address); - error = Wire.endTransmission(); - - - if (error == 0) - { - Serial.print("I2C device found at address 0x"); - if (address<16) - Serial.print("0"); - Serial.print(address,HEX); - Serial.println(" !"); - - nDevices++; - } - else if (error==4) - { - Serial.print("Unknown error at address 0x"); - if (address<16) - Serial.print("0"); - Serial.println(address,HEX); - } - } - if (nDevices == 0) - Serial.println("No I2C devices found\n"); - else - Serial.println("done\n"); - + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer } - void LPS22H::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) - { - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.write(data); // Put data in Tx buffer - Wire.endTransmission(); // Send the Tx buffer - } - - uint8_t LPS22H::readByte(uint8_t address, uint8_t subAddress) - { - uint8_t data; // `data` will store the register data - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive - Wire.requestFrom(address, (size_t) 1); // Read one uint8_t from slave register address - data = Wire.read(); // Fill Rx buffer with result - return data; // Return data read from slave register - } +static uint8_t lps22h_read_byte(uint8_t address, uint8_t subAddress) +{ + uint8_t data; // `data` will store the register data + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(address, (size_t) 1); // Read one uint8_t from slave register address + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data lps22h_read from slave register +} - void LPS22H::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) - { - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive - uint8_t i = 0; - Wire.requestFrom(address, (size_t)count); // Read bytes from slave register address - while (Wire.available()) { - dest[i++] = Wire.read(); } // Put read results in the Rx buffer - } +static void lps22h_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; + Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address + while(Wire.available()) + { + dest[i++] = Wire.lps22h_read(); + } // Put lps22h_read results in the Rx buffer +} diff --git a/Drivers/EM7180/Src/lsm6dsm.c b/Drivers/EM7180/Src/lsm6dsm.c index 33d8ac4..54f8b2a 100644 --- a/Drivers/EM7180/Src/lsm6dsm.c +++ b/Drivers/EM7180/Src/lsm6dsm.c @@ -14,281 +14,288 @@ * Library may be used freely and without limit with attribution. */ +/* Includes */ +#include #include "lsm6dsm.h" -LSM6DSM::LSM6DSM(uint8_t intPin1, uint8_t intPin2) +/* Private Global Variables */ +static uint8_t _intPin1; +static uint8_t _intPin2; +static float _aRes; +static float _gRes; + +/* Function Prototypes */ +static void lsm6dsm_write_byte(uint8_t address, uint8_t subAddress, + uint8_t data); +static uint8_t lsm6dsm_read_byte(uint8_t address, uint8_t subAddress); +static void lsm6dsm_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest); + +/* Function Definitions */ +lsm6dsm_new(uint8_t pin1, uint8_t pin2) { - pinMode(intPin1, INPUT); - _intPin1 = intPin1; - pinMode(intPin2, INPUT); - _intPin2 = intPin2; + pinMode(pin1, INPUT); + _intPin1 = pin1; + pinMode(pin2, INPUT); + _intPin2 = pin2; } - -uint8_t LSM6DSM::getChipID() +uint8_t lsm6dsm_chip_id_get() { - uint8_t c = readByte(LSM6DSM_ADDRESS, LSM6DSM_WHO_AM_I); - return c; + uint8_t c = lsm6dsm_read_byte(LSM6DSM_ADDRESS, LSM6DSM_WHO_AM_I); + return c; } -float LSM6DSM::getAres(uint8_t Ascale) { - switch (Ascale) - { - // Possible accelerometer scales (and their register bit settings) are: - // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). - // Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value: - case AFS_2G: - _aRes = 2.0f/32768.0f; - return _aRes; - break; - case AFS_4G: - _aRes = 4.0f/32768.0f; - return _aRes; - break; - case AFS_8G: - _aRes = 8.0f/32768.0f; - return _aRes; - break; - case AFS_16G: - _aRes = 16.0f/32768.0f; - return _aRes; - break; - } +float lsm6dsm_ares_get(uint8_t ascale) +{ + switch(ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + _aRes = 2.0f / 32768.0f; + return _aRes; + break; + case AFS_4G: + _aRes = 4.0f / 32768.0f; + return _aRes; + break; + case AFS_8G: + _aRes = 8.0f / 32768.0f; + return _aRes; + break; + case AFS_16G: + _aRes = 16.0f / 32768.0f; + return _aRes; + break; + } } -float LSM6DSM::getGres(uint8_t Gscale) { - switch (Gscale) - { - // Possible gyro scales (and their register bit settings) are: - // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). - case GFS_245DPS: - _gRes = 245.0f/32768.0f; - return _gRes; - break; - case GFS_500DPS: - _gRes = 500.0f/32768.0f; - return _gRes; - break; - case GFS_1000DPS: - _gRes = 1000.0f/32768.0f; - return _gRes; - break; - case GFS_2000DPS: - _gRes = 2000.0f/32768.0f; - return _gRes; - break; - } +float lsm6dsm_gres_get(uint8_t gscale) +{ + switch(gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + case GFS_245DPS: + _gRes = 245.0f / 32768.0f; + return _gRes; + break; + case GFS_500DPS: + _gRes = 500.0f / 32768.0f; + return _gRes; + break; + case GFS_1000DPS: + _gRes = 1000.0f / 32768.0f; + return _gRes; + break; + case GFS_2000DPS: + _gRes = 2000.0f / 32768.0f; + return _gRes; + break; + } } - -void LSM6DSM::reset() +void lsm6dsm_reset() { - // reset device - uint8_t temp = readByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C); - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x01); // Set bit 0 to 1 to reset LSM6DSM - delay(100); // Wait for all registers to reset + // reset device + uint8_t temp = lsm6dsm_read_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C); + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x01); // Set bit 0 to 1 to reset LSM6DSM + delay(100); // Wait for all registers to reset } - -void LSM6DSM::init(uint8_t Ascale, uint8_t Gscale, uint8_t AODR, uint8_t GODR) +void lsm6dsm_init(uint8_t ascale, uint8_t gscale, uint8_t AODR, uint8_t GODR) { - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL1_XL, AODR << 4 | Ascale << 2); - - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL2_G, GODR << 4 | Gscale << 2); - - uint8_t temp = readByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C); - // enable block update (bit 6 = 1), auto-increment registers (bit 2 = 1) - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x40 | 0x04); - // by default, interrupts active HIGH, push pull, little endian data - // (can be changed by writing to bits 5, 4, and 1, resp to above register) - - // enable accel LP2 (bit 7 = 1), set LP2 tp ODR/9 (bit 6 = 1), enable input_composite (bit 3) for low noise - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL8_XL, 0x80 | 0x40 | 0x08 ); - - // interrupt handling - writeByte(LSM6DSM_ADDRESS, LSM6DSM_DRDY_PULSE_CFG, 0x80); // latch interrupt until data read - writeByte(LSM6DSM_ADDRESS, LSM6DSM_INT1_CTRL, 0x40); // enable significant motion interrupts on INT1 - writeByte(LSM6DSM_ADDRESS, LSM6DSM_INT2_CTRL, 0x03); // enable accel/gyro data ready interrupts on INT2 -} + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL1_XL, + AODR << 4 | ascale << 2); + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL2_G, + GODR << 4 | gscale << 2); -void LSM6DSM::selfTest() -{ - int16_t temp[7] = {0, 0, 0, 0, 0, 0, 0}; - int16_t accelPTest[3] = {0, 0, 0}, accelNTest[3] = {0, 0, 0}, gyroPTest[3] = {0, 0, 0}, gyroNTest[3] = {0, 0, 0}; - int16_t accelNom[3] = {0, 0, 0}, gyroNom[3] = {0, 0, 0}; - - readData(temp); - accelNom[0] = temp[4]; - accelNom[1] = temp[5]; - accelNom[2] = temp[6]; - gyroNom[0] = temp[1]; - gyroNom[1] = temp[2]; - gyroNom[2] = temp[3]; - - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x01); // positive accel self test - delay(100); // let accel respond - readData(temp); - accelPTest[0] = temp[4]; - accelPTest[1] = temp[5]; - accelPTest[2] = temp[6]; - - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x03); // negative accel self test - delay(100); // let accel respond - readData(temp); - accelNTest[0] = temp[4]; - accelNTest[1] = temp[5]; - accelNTest[2] = temp[6]; - - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x04); // positive gyro self test - delay(100); // let gyro respond - readData(temp); - gyroPTest[0] = temp[1]; - gyroPTest[1] = temp[2]; - gyroPTest[2] = temp[3]; - - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x0C); // negative gyro self test - delay(100); // let gyro respond - readData(temp); - gyroNTest[0] = temp[1]; - gyroNTest[1] = temp[2]; - gyroNTest[2] = temp[3]; - - writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x00); // normal mode - delay(100); // let accel and gyro respond - - Serial.println("Accel Self Test:"); - Serial.print("+Ax results:"); Serial.print( (accelPTest[0] - accelNom[0]) * _aRes * 1000.0); Serial.println(" mg"); - Serial.print("-Ax results:"); Serial.println((accelNTest[0] - accelNom[0]) * _aRes * 1000.0); - Serial.print("+Ay results:"); Serial.println((accelPTest[1] - accelNom[1]) * _aRes * 1000.0); - Serial.print("-Ay results:"); Serial.println((accelNTest[1] - accelNom[1]) * _aRes * 1000.0); - Serial.print("+Az results:"); Serial.println((accelPTest[2] - accelNom[2]) * _aRes * 1000.0); - Serial.print("-Az results:"); Serial.println((accelNTest[2] - accelNom[2]) * _aRes * 1000.0); - Serial.println("Should be between 90 and 1700 mg"); - - Serial.println("Gyro Self Test:"); - Serial.print("+Gx results:"); Serial.print((gyroPTest[0] - gyroNom[0]) * _gRes); Serial.println(" dps"); - Serial.print("-Gx results:"); Serial.println((gyroNTest[0] - gyroNom[0]) * _gRes); - Serial.print("+Gy results:"); Serial.println((gyroPTest[1] - gyroNom[1]) * _gRes); - Serial.print("-Gy results:"); Serial.println((gyroNTest[1] - gyroNom[1]) * _gRes); - Serial.print("+Gz results:"); Serial.println((gyroPTest[2] - gyroNom[2]) * _gRes); - Serial.print("-Gz results:"); Serial.println((gyroNTest[2] - gyroNom[2]) * _gRes); - Serial.println("Should be between 20 and 80 dps"); - delay(2000); - - -} + uint8_t temp = lsm6dsm_read_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C); + // enable block update (bit 6 = 1), auto-increment registers (bit 2 = 1) + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x40 | 0x04); + // by default, interrupts active HIGH, push pull, little endian data + // (can be changed by writing to bits 5, 4, and 1, resp to above register) + // enable accel LP2 (bit 7 = 1), set LP2 tp ODR/9 (bit 6 = 1), enable input_composite (bit 3) for low noise + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL8_XL, 0x80 | 0x40 | 0x08); + + // interrupt handling + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_DRDY_PULSE_CFG, 0x80); // latch interrupt until data read + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_INT1_CTRL, 0x40); // enable significant motion interrupts on INT1 + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_INT2_CTRL, 0x03); // enable accel/gyro data ready interrupts on INT2 +} -void LSM6DSM::offsetBias(float * dest1, float * dest2) +void lsm6dsm_selfTest() { - int16_t temp[7] = {0, 0, 0, 0, 0, 0, 0}; - int32_t sum[7] = {0, 0, 0, 0, 0, 0, 0}; - - Serial.println("Calculate accel and gyro offset biases: keep sensor flat and motionless!"); - delay(4000); - - for (int ii = 0; ii < 128; ii++) - { - readData(temp); - sum[1] += temp[1]; - sum[2] += temp[2]; - sum[3] += temp[3]; - sum[4] += temp[4]; - sum[5] += temp[5]; - sum[6] += temp[6]; - delay(50); - } - - dest1[0] = sum[1]*_gRes/128.0f; - dest1[1] = sum[2]*_gRes/128.0f; - dest1[2] = sum[3]*_gRes/128.0f; - dest2[0] = sum[4]*_aRes/128.0f; - dest2[1] = sum[5]*_aRes/128.0f; - dest2[2] = sum[6]*_aRes/128.0f; - - if(dest2[0] > 0.8f) {dest2[0] -= 1.0f;} // Remove gravity from the x-axis accelerometer bias calculation - if(dest2[0] < -0.8f) {dest2[0] += 1.0f;} // Remove gravity from the x-axis accelerometer bias calculation - if(dest2[1] > 0.8f) {dest2[1] -= 1.0f;} // Remove gravity from the y-axis accelerometer bias calculation - if(dest2[1] < -0.8f) {dest2[1] += 1.0f;} // Remove gravity from the y-axis accelerometer bias calculation - if(dest2[2] > 0.8f) {dest2[2] -= 1.0f;} // Remove gravity from the z-axis accelerometer bias calculation - if(dest2[2] < -0.8f) {dest2[2] += 1.0f;} // Remove gravity from the z-axis accelerometer bias calculation + int16_t temp[7] = { 0, 0, 0, 0, 0, 0, 0 }; + int16_t accelPTest[3] = { 0, 0, 0 }, accelNTest[3] = { 0, 0, 0 }, + gyroPTest[3] = { 0, 0, 0 }, gyroNTest[3] = { 0, 0, 0 }; + int16_t accelNom[3] = { 0, 0, 0 }, gyroNom[3] = { 0, 0, 0 }; + + readData(temp); + accelNom[0] = temp[4]; + accelNom[1] = temp[5]; + accelNom[2] = temp[6]; + gyroNom[0] = temp[1]; + gyroNom[1] = temp[2]; + gyroNom[2] = temp[3]; + + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x01); // positive accel self test + delay(100); // let accel respond + readData(temp); + accelPTest[0] = temp[4]; + accelPTest[1] = temp[5]; + accelPTest[2] = temp[6]; + + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x03); // negative accel self test + delay(100); // let accel respond + readData(temp); + accelNTest[0] = temp[4]; + accelNTest[1] = temp[5]; + accelNTest[2] = temp[6]; + + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x04); // positive gyro self test + delay(100); // let gyro respond + readData(temp); + gyroPTest[0] = temp[1]; + gyroPTest[1] = temp[2]; + gyroPTest[2] = temp[3]; + + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x0C); // negative gyro self test + delay(100); // let gyro respond + readData(temp); + gyroNTest[0] = temp[1]; + gyroNTest[1] = temp[2]; + gyroNTest[2] = temp[3]; + + lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x00); // normal mode + delay(100); // let accel and gyro respond + + Serial.println("Accel Self Test:"); + Serial.print("+Ax results:"); + Serial.print((accelPTest[0] - accelNom[0]) * _aRes * 1000.0); + Serial.println(" mg"); + Serial.print("-Ax results:"); + Serial.println((accelNTest[0] - accelNom[0]) * _aRes * 1000.0); + Serial.print("+Ay results:"); + Serial.println((accelPTest[1] - accelNom[1]) * _aRes * 1000.0); + Serial.print("-Ay results:"); + Serial.println((accelNTest[1] - accelNom[1]) * _aRes * 1000.0); + Serial.print("+Az results:"); + Serial.println((accelPTest[2] - accelNom[2]) * _aRes * 1000.0); + Serial.print("-Az results:"); + Serial.println((accelNTest[2] - accelNom[2]) * _aRes * 1000.0); + Serial.println("Should be between 90 and 1700 mg"); + + Serial.println("Gyro Self Test:"); + Serial.print("+Gx results:"); + Serial.print((gyroPTest[0] - gyroNom[0]) * _gRes); + Serial.println(" dps"); + Serial.print("-Gx results:"); + Serial.println((gyroNTest[0] - gyroNom[0]) * _gRes); + Serial.print("+Gy results:"); + Serial.println((gyroPTest[1] - gyroNom[1]) * _gRes); + Serial.print("-Gy results:"); + Serial.println((gyroNTest[1] - gyroNom[1]) * _gRes); + Serial.print("+Gz results:"); + Serial.println((gyroPTest[2] - gyroNom[2]) * _gRes); + Serial.print("-Gz results:"); + Serial.println((gyroNTest[2] - gyroNom[2]) * _gRes); + Serial.println("Should be between 20 and 80 dps"); + delay(2000); } - -void LSM6DSM::readData(int16_t * destination) +void lsm6dsm_offsetBias(float *dest1, float *dest2) { - uint8_t rawData[14]; // x/y/z accel register data stored here - readBytes(LSM6DSM_ADDRESS, LSM6DSM_OUT_TEMP_L, 14, &rawData[0]); // Read the 14 raw data registers into data array - destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value - destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; - destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; - destination[3] = ((int16_t)rawData[7] << 8) | rawData[6] ; - destination[4] = ((int16_t)rawData[9] << 8) | rawData[8] ; - destination[5] = ((int16_t)rawData[11] << 8) | rawData[10] ; - destination[6] = ((int16_t)rawData[13] << 8) | rawData[12] ; + int16_t temp[7] = { 0, 0, 0, 0, 0, 0, 0 }; + int32_t sum[7] = { 0, 0, 0, 0, 0, 0, 0 }; + + Serial.println( + "Calculate accel and gyro offset biases: keep sensor flat and motionless!"); + delay(4000); + + for(int ii = 0; ii < 128; ii++) + { + readData(temp); + sum[1] += temp[1]; + sum[2] += temp[2]; + sum[3] += temp[3]; + sum[4] += temp[4]; + sum[5] += temp[5]; + sum[6] += temp[6]; + delay(50); + } + + dest1[0] = sum[1] * _gRes / 128.0f; + dest1[1] = sum[2] * _gRes / 128.0f; + dest1[2] = sum[3] * _gRes / 128.0f; + dest2[0] = sum[4] * _aRes / 128.0f; + dest2[1] = sum[5] * _aRes / 128.0f; + dest2[2] = sum[6] * _aRes / 128.0f; + + if(dest2[0] > 0.8f) + { + dest2[0] -= 1.0f; + } // Remove gravity from the x-axis accelerometer bias calculation + if(dest2[0] < -0.8f) + { + dest2[0] += 1.0f; + } // Remove gravity from the x-axis accelerometer bias calculation + if(dest2[1] > 0.8f) + { + dest2[1] -= 1.0f; + } // Remove gravity from the y-axis accelerometer bias calculation + if(dest2[1] < -0.8f) + { + dest2[1] += 1.0f; + } // Remove gravity from the y-axis accelerometer bias calculation + if(dest2[2] > 0.8f) + { + dest2[2] -= 1.0f; + } // Remove gravity from the z-axis accelerometer bias calculation + if(dest2[2] < -0.8f) + { + dest2[2] += 1.0f; + } // Remove gravity from the z-axis accelerometer bias calculation + } -// I2C scan function -void LSM6DSM::I2Cscan() +void lsm6dsm_read_data(int16_t *destination) { -// scan for i2c devices - byte error, address; - int nDevices; - - Serial.println("Scanning..."); - - nDevices = 0; - for(address = 1; address < 127; address++ ) - { - // The i2c_scanner uses the return value of - // the Write.endTransmission to see if - // a device did acknowledge to the address. -// Wire.beginTransmission(address); -// error = Wire.endTransmission(); - error = Wire.transfer(address, NULL, 0, NULL, 0); - - if (error == 0) - { - Serial.print("I2C device found at address 0x"); - if (address<16) - Serial.print("0"); - Serial.print(address,HEX); - Serial.println(" !"); - - nDevices++; - } - else if (error==4) - { - Serial.print("Unknown error at address 0x"); - if (address<16) - Serial.print("0"); - Serial.println(address,HEX); - } - } - if (nDevices == 0) - Serial.println("No I2C devices found\n"); - else - Serial.println("done\n"); - + uint8_t rawdata[14]; // x/y/z accel register data stored here + lsm6dsm_read(LSM6DSM_ADDRESS, LSM6DSM_OUT_TEMP_L, 14, &rawdata[0]); // Read the 14 raw data registers into data array + destination[0] = ((int16_t) rawdata[1] << 8) | rawdata[0]; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t) rawdata[3] << 8) | rawdata[2]; + destination[2] = ((int16_t) rawdata[5] << 8) | rawdata[4]; + destination[3] = ((int16_t) rawdata[7] << 8) | rawdata[6]; + destination[4] = ((int16_t) rawdata[9] << 8) | rawdata[8]; + destination[5] = ((int16_t) rawdata[11] << 8) | rawdata[10]; + destination[6] = ((int16_t) rawdata[13] << 8) | rawdata[12]; } // I2C read/write functions for the LSM6DSM +static void lsm6dsm_write_byte(uint8_t address, uint8_t subAddress, + uint8_t data) +{ + uint8_t temp[2]; + temp[0] = subAddress; + temp[1] = data; + Wire.transfer(address, &temp[0], 2, NULL, 0); +} - void LSM6DSM::writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { - uint8_t temp[2]; - temp[0] = subAddress; - temp[1] = data; - Wire.transfer(address, &temp[0], 2, NULL, 0); - } - - uint8_t LSM6DSM::readByte(uint8_t address, uint8_t subAddress) { - uint8_t temp[1]; - Wire.transfer(address, &subAddress, 1, &temp[0], 1); - return temp[0]; - } - - void LSM6DSM::readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { - Wire.transfer(address, &subAddress, 1, dest, count); - } +static uint8_t lsm6dsm_read_byte(uint8_t address, uint8_t subAddress) +{ + uint8_t temp[1]; + Wire.transfer(address, &subAddress, 1, &temp[0], 1); + return temp[0]; +} + +static void lsm6dsm_read(uint8_t address, uint8_t subAddress, uint8_t count, + uint8_t *dest) +{ + Wire.transfer(address, &subAddress, 1, dest, count); +}