diff --git a/EM7180_LSM9DS0_LPS25H.ino b/EM7180_LSM9DS0_LPS25H.ino new file mode 100644 index 0000000..53fccef --- /dev/null +++ b/EM7180_LSM9DS0_LPS25H.ino @@ -0,0 +1,1641 @@ +/* EM7180_LSM9DS0_MS5637_t3 Basic Example Code + by: Kris Winer + date: January 24, 2014 + license: Beerware - Use this code however you'd like. If you + find it useful you can buy me a beer some time. + + The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors, + in this case the LSM9DS0, and does sensor fusion with quaternions as its output. The SENtral loads firmware from the + on-board M24512DFMC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus, + and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and + heading/pitch/roll, if selected. + + This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor, + getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to + allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and + Mahony filter algorithms to compare with the hardware sensor fusion results. + Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. + + This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master, + the LSM9DS0 9-axis motion sensor (accel/gyro/mag) as slave, an LPS25H pressure/temperature sensor, and an M24512DFM + 512kbit (64 kByte) EEPROM as slave all connected via I2C. The SENtral can use the pressure data in the sensor fusion + and there is currently a driver for the LPS25H in the SENtral firmware. + + This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h. + The LPS25H is a simple but high resolution pressure sensor, which can be used in its high resolution + mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of + only 1 microAmp. The choice will depend on the application. The LPS25H is connected to the EM7180 I2C master bus and has an interrupt + connected to the EM7180 just like the LSM9DS0. The driver will use the data ready interrupt from the LPS25H to signal + to the EM7180 that it should read and process the pressure/temperature data. + + SDA and SCL should have external pull-up resistors (to 3.3V). + 4k7 resistors are on the EM7180+LSM9DS0+LPS25H+M24512DFM Mini Add-On board for Teensy 3.1. + + Hardware setup: + EM7180 Mini Add-On ------- Teensy 3.1 + VDD ---------------------- 3.3V + SDA ----------------------- 17 + SCL ----------------------- 16 + GND ---------------------- GND + INT------------------------ 8 + + Note: The LSM9DS0 is an I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library. + Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. + */ +//#include "Wire.h" +#include +#include +#include +#include + +// Using NOKIA 5110 monochrome 84 x 48 pixel display +// pin 7 - Serial clock out (SCLK) +// pin 6 - Serial data out (DIN) +// pin 5 - Data/Command select (D/C) +// pin 3 - LCD chip select (SCE) +// pin 4 - LCD reset (RST) +Adafruit_PCD8544 display = Adafruit_PCD8544(7, 6, 5, 3, 4); + +// See LPS25H "MEMS pressure sensor: 260-1260 hPa absolute digital output barometer" Data Sheet +#define LPS25H_REF_P_XL 0x08 +#define LPS25H_REF_P_L 0x09 +#define LPS25H_REF_P_H 0x0A +#define LPS25H_WHOAMI 0x0F // should return 0xBD +#define LPS25H_RES_CONF 0x10 +#define LPS25H_CTRL_REG1 0x20 +#define LPS25H_CTRL_REG2 0x21 +#define LPS25H_CTRL_REG3 0x22 +#define LPS25H_CTRL_REG4 0x23 +#define LPS25H_INT_CFG 0x24 +#define LPS25H_INT_SOURCE 0x25 +#define LPS25H_STATUS_REG 0x27 +#define LPS25H_PRESS_OUT_XL 0x28 +#define LPS25H_PRESS_OUT_L 0x29 +#define LPS25H_PRESS_OUT_H 0x2A +#define LPS25H_TEMP_OUT_L 0x2B +#define LPS25H_TEMP_OUT_H 0x2C +#define LPS25H_FIFO_CTRL 0x2E +#define LPS25H_FIFO_STATUS 0x2F +#define LPS25H_THS_P_L 0x30 +#define LPS25H_THS_P_H 0x31 +#define LPS25H_RPDS_L 0x39 +#define LPS25H_RPDS_H 0x3A + +// See also LSM9DS0 Register Map and Descriptions,http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00087365.pdf +// +//////////////////////////// +// LSM9DS0 Gyro Registers // +//////////////////////////// +#define LSM9DS0G_WHO_AM_I_G 0x0F +#define LSM9DS0G_CTRL_REG1_G 0x20 +#define LSM9DS0G_CTRL_REG2_G 0x21 +#define LSM9DS0G_CTRL_REG3_G 0x22 +#define LSM9DS0G_CTRL_REG4_G 0x23 +#define LSM9DS0G_CTRL_REG5_G 0x24 +#define LSM9DS0G_REFERENCE_G 0x25 +#define LSM9DS0G_STATUS_REG_G 0x27 +#define LSM9DS0G_OUT_X_L_G 0x28 +#define LSM9DS0G_OUT_X_H_G 0x29 +#define LSM9DS0G_OUT_Y_L_G 0x2A +#define LSM9DS0G_OUT_Y_H_G 0x2B +#define LSM9DS0G_OUT_Z_L_G 0x2C +#define LSM9DS0G_OUT_Z_H_G 0x2D +#define LSM9DS0G_FIFO_CTRL_REG_G 0x2E +#define LSM9DS0G_FIFO_SRC_REG_G 0x2F +#define LSM9DS0G_INT1_CFG_G 0x30 +#define LSM9DS0G_INT1_SRC_G 0x31 +#define LSM9DS0G_INT1_THS_XH_G 0x32 +#define LSM9DS0G_INT1_THS_XL_G 0x33 +#define LSM9DS0G_INT1_THS_YH_G 0x34 +#define LSM9DS0G_INT1_THS_YL_G 0x35 +#define LSM9DS0G_INT1_THS_ZH_G 0x36 +#define LSM9DS0G_INT1_THS_ZL_G 0x37 +#define LSM9DS0G_INT1_DURATION_G 0x38 + +////////////////////////////////////////// +// LSM9DS0XM Accel/Magneto (XM) Registers // +////////////////////////////////////////// +#define LSM9DS0XM_OUT_TEMP_L_XM 0x05 +#define LSM9DS0XM_OUT_TEMP_H_XM 0x06 +#define LSM9DS0XM_STATUS_REG_M 0x07 +#define LSM9DS0XM_OUT_X_L_M 0x08 +#define LSM9DS0XM_OUT_X_H_M 0x09 +#define LSM9DS0XM_OUT_Y_L_M 0x0A +#define LSM9DS0XM_OUT_Y_H_M 0x0B +#define LSM9DS0XM_OUT_Z_L_M 0x0C +#define LSM9DS0XM_OUT_Z_H_M 0x0D +#define LSM9DS0XM_WHO_AM_I_XM 0x0F +#define LSM9DS0XM_INT_CTRL_REG_M 0x12 +#define LSM9DS0XM_INT_SRC_REG_M 0x13 +#define LSM9DS0XM_INT_THS_L_M 0x14 +#define LSM9DS0XM_INT_THS_H_M 0x15 +#define LSM9DS0XM_OFFSET_X_L_M 0x16 +#define LSM9DS0XM_OFFSET_X_H_M 0x17 +#define LSM9DS0XM_OFFSET_Y_L_M 0x18 +#define LSM9DS0XM_OFFSET_Y_H_M 0x19 +#define LSM9DS0XM_OFFSET_Z_L_M 0x1A +#define LSM9DS0XM_OFFSET_Z_H_M 0x1B +#define LSM9DS0XM_REFERENCE_X 0x1C +#define LSM9DS0XM_REFERENCE_Y 0x1D +#define LSM9DS0XM_REFERENCE_Z 0x1E +#define LSM9DS0XM_CTRL_REG0_XM 0x1F +#define LSM9DS0XM_CTRL_REG1_XM 0x20 +#define LSM9DS0XM_CTRL_REG2_XM 0x21 +#define LSM9DS0XM_CTRL_REG3_XM 0x22 +#define LSM9DS0XM_CTRL_REG4_XM 0x23 +#define LSM9DS0XM_CTRL_REG5_XM 0x24 +#define LSM9DS0XM_CTRL_REG6_XM 0x25 +#define LSM9DS0XM_CTRL_REG7_XM 0x26 +#define LSM9DS0XM_STATUS_REG_A 0x27 +#define LSM9DS0XM_OUT_X_L_A 0x28 +#define LSM9DS0XM_OUT_X_H_A 0x29 +#define LSM9DS0XM_OUT_Y_L_A 0x2A +#define LSM9DS0XM_OUT_Y_H_A 0x2B +#define LSM9DS0XM_OUT_Z_L_A 0x2C +#define LSM9DS0XM_OUT_Z_H_A 0x2D +#define LSM9DS0XM_FIFO_CTRL_REG 0x2E +#define LSM9DS0XM_FIFO_SRC_REG 0x2F +#define LSM9DS0XM_INT_GEN_1_REG 0x30 +#define LSM9DS0XM_INT_GEN_1_SRC 0x31 +#define LSM9DS0XM_INT_GEN_1_THS 0x32 +#define LSM9DS0XM_INT_GEN_1_DURATION 0x33 +#define LSM9DS0XM_INT_GEN_2_REG 0x34 +#define LSM9DS0XM_INT_GEN_2_SRC 0x35 +#define LSM9DS0XM_INT_GEN_2_THS 0x36 +#define LSM9DS0XM_INT_GEN_2_DURATION 0x37 +#define LSM9DS0XM_CLICK_CFG 0x38 +#define LSM9DS0XM_CLICK_SRC 0x39 +#define LSM9DS0XM_CLICK_THS 0x3A +#define LSM9DS0XM_TIME_LIMIT 0x3B +#define LSM9DS0XM_TIME_LATENCY 0x3C +#define LSM9DS0XM_TIME_WINDOW 0x3D +#define LSM9DS0XM_ACT_THS 0x3E +#define LSM9DS0XM_ACT_DUR 0x3F + + +// EM7180 SENtral register map +// see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf +// +#define EM7180_QX 0x00 // this is a 32-bit normalized floating point number read from registers 0x00-03 +#define EM7180_QY 0x04 // this is a 32-bit normalized floating point number read from registers 0x04-07 +#define EM7180_QZ 0x08 // this is a 32-bit normalized floating point number read from registers 0x08-0B +#define EM7180_QW 0x0C // this is a 32-bit normalized floating point number read from registers 0x0C-0F +#define EM7180_QTIME 0x10 // this is a 16-bit unsigned integer read from registers 0x10-11 +#define EM7180_MX 0x12 // int16_t from registers 0x12-13 +#define EM7180_MY 0x14 // int16_t from registers 0x14-15 +#define EM7180_MZ 0x16 // int16_t from registers 0x16-17 +#define EM7180_MTIME 0x18 // uint16_t from registers 0x18-19 +#define EM7180_AX 0x1A // int16_t from registers 0x1A-1B +#define EM7180_AY 0x1C // int16_t from registers 0x1C-1D +#define EM7180_AZ 0x1E // int16_t from registers 0x1E-1F +#define EM7180_ATIME 0x20 // uint16_t from registers 0x20-21 +#define EM7180_GX 0x22 // int16_t from registers 0x22-23 +#define EM7180_GY 0x24 // int16_t from registers 0x24-25 +#define EM7180_GZ 0x26 // int16_t from registers 0x26-27 +#define EM7180_GTIME 0x28 // uint16_t from registers 0x28-29 +#define EM7180_Baro 0x2A // start of two-byte LPS25H pressure data, 16-bit signed interger +#define EM7180_BaroTIME 0x2C // start of two-byte LPS25H pressure timestamp, 16-bit unsigned +#define EM7180_Temp 0x2E // start of two-byte LPS25H temperature data, 16-bit signed interger +#define EM7180_TempTIME 0x30 // start of two-byte LPS25H temperature timestamp, 16-bit unsigned +#define EM7180_QRateDivisor 0x32 // uint8_t +#define EM7180_EnableEvents 0x33 +#define EM7180_HostControl 0x34 +#define EM7180_EventStatus 0x35 +#define EM7180_SensorStatus 0x36 +#define EM7180_SentralStatus 0x37 +#define EM7180_AlgorithmStatus 0x38 +#define EM7180_FeatureFlags 0x39 +#define EM7180_ParamAcknowledge 0x3A +#define EM7180_SavedParamByte0 0x3B +#define EM7180_SavedParamByte1 0x3C +#define EM7180_SavedParamByte2 0x3D +#define EM7180_SavedParamByte3 0x3E +#define EM7180_ActualMagRate 0x45 +#define EM7180_ActualAccelRate 0x46 +#define EM7180_ActualGyroRate 0x47 +#define EM7180_ActualBaroRate 0x48 +#define EM7180_ActualTempRate 0x49 +#define EM7180_ErrorRegister 0x50 +#define EM7180_AlgorithmControl 0x54 +#define EM7180_MagRate 0x55 +#define EM7180_AccelRate 0x56 +#define EM7180_GyroRate 0x57 +#define EM7180_BaroRate 0x58 +#define EM7180_TempRate 0x59 +#define EM7180_LoadParamByte0 0x60 +#define EM7180_LoadParamByte1 0x61 +#define EM7180_LoadParamByte2 0x62 +#define EM7180_LoadParamByte3 0x63 +#define EM7180_ParamRequest 0x64 +#define EM7180_ROMVersion1 0x70 +#define EM7180_ROMVersion2 0x71 +#define EM7180_RAMVersion1 0x72 +#define EM7180_RAMVersion2 0x73 +#define EM7180_ProductID 0x90 +#define EM7180_RevisionID 0x91 +#define EM7180_RunStatus 0x92 +#define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB) +#define EM7180_UploadData 0x96 +#define EM7180_CRCHost 0x97 // uint32_t from registers 0x97-9A +#define EM7180_ResetRequest 0x9B +#define EM7180_PassThruStatus 0x9E +#define EM7180_PassThruControl 0xA0 + +// Using the Teensy Mini Add-On board, LSM9DS0 SDOG = SDOXM = GND as designed +// Seven-bit LSM9DS0 device addresses are ACC = 0x1E, GYRO = 0x6A, MAG = 0x1E + +// Using the EM7180+LSM9DS0+LPS25H Teensy 3.1 Add-On shield, ADO is set to 0 +#define ADO 0 +#if ADO +#define LSM9DS0XM_ADDRESS 0x1D // Address of accel/magnetometer when ADO = 1 +#define LSM9DS0G_ADDRESS 0x6B // Address of gyro when ADO = 1 +#else +#define LSM9DS0XM_ADDRESS 0x1E // Address of accel/magnetometer when ADO = 0 +#define LSM9DS0G_ADDRESS 0x6A // Address of gyro when ADO = 0 +#endif +#define LPS25H_ADDRESS 0x5D // Address of altimeter with LPS25H ADO = 1 +#define EM7180_ADDRESS 0x28 // Address of the EM7180 SENtral sensor hub +#define M24512DFM_DATA_ADDRESS 0x50 // Address of the 500 page M24512DFM EEPROM data buffer, 1024 bits (128 8-bit bytes) per page +#define M24512DFM_IDPAGE_ADDRESS 0x58 // Address of the single M24512DFM lockable EEPROM ID page + +#define SerialDebug true // set to true to get Serial output for debugging + +enum PODR { // Altimeter output data rate + P_1shot = 0, + P_1Hz, + P_7Hz, + P_12Hz, // 12.5 Hz output data rate + P_25Hz +}; + +enum Pavg { // Altimeter pressure internal data averaging + P_avg_8 = 0, // average pressure data 8 times + P_avg_32, // average pressure data 32 times + P_avg_128, // average pressure data 128 times + P_avg_512 // average pressure data 32 times +}; + +enum Tavg { // Altimeter temperature internal data averaging + T_avg_8 = 0, // average temperature data 8 times + T_avg_16, // average temperature data 16 times + T_avg_32, // average temperature data 32 times + T_avg_64 // average temperature data 64 times +}; + +// Set initial input parameters +enum Ascale { // set of allowable accel full scale settings + AFS_2G = 0, + AFS_4G, + AFS_6G, + AFS_8G, + AFS_16G +}; + +enum Aodr { // set of allowable gyro sample rates + AODR_PowerDown = 0, + AODR_3_125Hz, + AODR_6_25Hz, + AODR_12_5Hz, + AODR_25Hz, + AODR_50Hz, + AODR_100Hz, + AODR_200Hz, + AODR_400Hz, + AODR_800Hz, + AODR_1600Hz +}; + +enum Abw { // set of allowable accewl bandwidths + ABW_773Hz = 0, + ABW_194Hz, + ABW_362Hz, + ABW_50Hz +}; + +enum Gscale { // set of allowable gyro full scale settings + GFS_245DPS = 0, + GFS_500DPS, + GFS_NoOp, + GFS_2000DPS +}; + +enum Godr { // set of allowable gyro sample rates + GODR_95Hz = 0, + GODR_190Hz, + GODR_380Hz, + GODR_760Hz +}; + +enum Gbw { // set of allowable gyro data bandwidths + GBW_low = 0, // 12.5 Hz at Godr = 95 Hz, 12.5 Hz at Godr = 190 Hz, 30 Hz at Godr = 760 Hz + GBW_med, // 25 Hz at Godr = 95 Hz, 25 Hz at Godr = 190 Hz, 35 Hz at Godr = 760 Hz + GBW_high, // 25 Hz at Godr = 95 Hz, 50 Hz at Godr = 190 Hz, 50 Hz at Godr = 760 Hz + GBW_highest // 25 Hz at Godr = 95 Hz, 70 Hz at Godr = 190 Hz, 100 Hz at Godr = 760 Hz +}; + +enum Mscale { // set of allowable mag full scale settings + MFS_2G = 0, + MFS_4G, + MFS_8G, + MFS_12G +}; + +enum Mres { + MRES_LowResolution = 0, + MRES_NoOp, + MRES_HighResolution +}; + +enum Modr { // set of allowable mag sample rates + MODR_3_125Hz = 0, + MODR_6_25Hz, + MODR_12_5Hz, + MODR_25Hz, + MODR_50Hz, + MODR_100Hz +}; + +// Specify sensor full scale +uint8_t PODR = P_7Hz, Pavg = P_avg_512, Tavg = T_avg_64; // set LPS25H pressure amd temperature output data rate +uint8_t Gscale = GFS_245DPS; // gyro full scale +uint8_t Godr = GODR_380Hz; // gyro data sample rate +uint8_t Gbw = GBW_low; // gyro data bandwidth +uint8_t Ascale = AFS_2G; // accel full scale +uint8_t Aodr = AODR_400Hz; // accel data sample rate +uint8_t Abw = ABW_50Hz; // accel data bandwidth +uint8_t Mscale = MFS_12G; // mag full scale +uint8_t Modr = MODR_100Hz; // mag data sample rate +uint8_t Mres = MRES_LowResolution; // magnetometer operation mode +float aRes, gRes, mRes; // scale resolutions per LSB for the sensors + +// Pin definitions +int myLed = 13; // LED on the Teensy 3.1 + +// LPS25H variables +float Temperature, Pressure; // stores LPS25H pressures sensor pressure and temperature + +// LSM9DS0 variables +int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output +int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output +int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output +float Quat[4] = {0, 0, 0, 0}; // quaternion data register +float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag +int16_t tempCount, rawPressure, rawTemperature; // pressure, temperature raw count output +float temperature; // Stores the LSM9DS0 internal chip temperature in degrees Celsius +float SelfTest[6]; // holds results of gyro and accelerometer self test + +// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System) +float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s) +float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) +// There is a tradeoff in the beta parameter between accuracy and response speed. +// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy. +// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion. +// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car! +// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec +// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense; +// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy. +// In any case, this is the free parameter in the Madgwick filtering and fusion scheme. +float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta +float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value +#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral +#define Ki 0.0f + +uint32_t delt_t = 0, count = 0, sumCount = 0; // used to control display output rate +float pitch, yaw, roll, Yaw, Pitch, Roll; +float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes +uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval +uint32_t Now = 0; // used to calculate integration interval +uint8_t param[4]; // used for param transfer +uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges + +float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values +float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion +float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method + +bool passThru = false; + +void setup() +{ + // Setup for Master mode, pins 18/19, external pullups, 400kHz for Teensy 3.1 + Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400); + delay(5000); + Serial.begin(38400); + + pinMode(myLed, OUTPUT); + digitalWrite(myLed, HIGH); + + I2Cscan(); // should detect SENtral at 0x28 + + // Read SENtral device information + uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1); + uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2); + Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609"); + uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1); + uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2); + Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2); + uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID); + Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80"); + uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID); + Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02"); + + delay(2000); // give some time to read the screen + + // Check which sensors can be detected by the EM7180 + uint8_t featureflag = readByte(EM7180_ADDRESS, EM7180_FeatureFlags); + if(featureflag & 0x01) Serial.println("A barometer is installed"); + if(featureflag & 0x02) Serial.println("A humidity sensor is installed"); + if(featureflag & 0x04) Serial.println("A temperature sensor is installed"); + if(featureflag & 0x08) Serial.println("A custom sensor is installed"); + if(featureflag & 0x10) Serial.println("A second custom sensor is installed"); + if(featureflag & 0x20) Serial.println("A third custom sensor is installed"); + + delay(2000); // give some time to read the screen + + // Check SENtral status, make sure EEPROM upload of firmware was accomplished + byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); + int count = 0; + while(!STAT) { + writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); + delay(500); + count++; + STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); + if(count > 10) break; + } + + if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!"); + delay(1000); // give some time to read the screen + + // Set up the SENtral as sensor bus in normal operating mode +if(!passThru) { +// Enter EM7180 initialized state +writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers +writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off +// Set accel/gyro/mage desired ODR rates +writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 95 Hz +writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x1E); // 30 Hz +writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x14); // 200/10 Hz +writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x13); // 190/10 Hz +writeByte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | 0x19); // set enable bit and set Baro rate to 25 Hz +//writeByte(EM7180_ADDRESS, EM7180_TempRate, 0x19); // set enable bit and set rate to 25 Hz +// Configure operating mode +writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data +// Enable interrupt to host upon certain events +// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), +// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) +writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x7F); +// Enable EM7180 run mode +writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode +delay(100); + +// EM7180 parameter adjustments + Serial.println("Beginning Parameter Adjustments"); + + // Read sensor default FS values from parameter space + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process + byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4A)) { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); + EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); + Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); + Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4B)) { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); + Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm + + //Disable stillness mode + EM7180_set_integer_param (0x49, 0x00); + + //Write desired sensor full scale ranges to the EM7180 + EM7180_set_mag_acc_FS (0x3E8, 0x08); // 1000 uT, 8 g + EM7180_set_gyro_FS (0x7D0); // 2000 dps + + // Read sensor new FS values from parameter space + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4A)) { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); + EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); + Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); + Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4B)) { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); + Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm + + +// Read EM7180 status +uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus); +if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode"); +uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); +if(algoStatus & 0x01) Serial.println(" EM7180 standby status"); +if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow"); +if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode"); +if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed"); +if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected"); +if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data"); +uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); +if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!"); +uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); +if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset"); +if(eventStatus & 0x02) Serial.println(" EM7180 Error"); +if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result"); +if(eventStatus & 0x08) Serial.println(" EM7180 new mag result"); +if(eventStatus & 0x10) Serial.println(" EM7180 new accel result"); +if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); +if(eventStatus & 0x40) Serial.println(" EM7180 new baro result"); + + delay(1000); // give some time to read the screen + + // Check sensor status + uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus); + Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus); + if(sensorStatus == 0x00) Serial.println("All sensors OK!"); + if(sensorStatus & 0x01) Serial.println("Magnetometer not acknowledging!"); + if(sensorStatus & 0x02) Serial.println("Accelerometer not acknowledging!"); + if(sensorStatus & 0x04) Serial.println("Gyro not acknowledging!"); + if(sensorStatus & 0x10) Serial.println("Magnetometer ID not recognized!"); + if(sensorStatus & 0x20) Serial.println("Accelerometer ID not recognized!"); + if(sensorStatus & 0x40) Serial.println("Gyro ID not recognized!"); + + Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz"); + Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz"); + Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz"); + Serial.print("Actual BaroRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualBaroRate)); Serial.println(" Hz"); + Serial.print("Actual TempRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualTempRate)); Serial.println(" Hz"); + + delay(3000); // give some time to read the screen + + } + + // If pass through mode desired, set it up here + if(passThru) { + // Put EM7180 SENtral into pass-through mode + SENtralPassThroughMode(); + delay(1000); + + I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages) + +// Read first page of EEPROM + uint8_t data[128]; + M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data); + Serial.println("EEPROM Signature Byte"); + Serial.print(data[0], HEX); Serial.println(" Should be 0x2A"); + Serial.print(data[1], HEX); Serial.println(" Should be 0x65"); + for (int i = 0; i < 128; i++) { + Serial.print(data[i], HEX); Serial.print(" "); + } + + // Set up the interrupt pin, its set as active high, push-pull + pinMode(myLed, OUTPUT); + digitalWrite(myLed, HIGH); + + display.begin(); // Initialize the display + display.setContrast(58); // Set the contrast + +// Start device display with ID of sensor + display.clearDisplay(); + display.setTextSize(2); + display.setCursor(0,0); display.print("LSM9DS0"); + display.setTextSize(1); + display.setCursor(0, 20); display.print("9-DOF 16-bit"); + display.setCursor(0, 30); display.print("motion sensor"); + display.setCursor(20,40); display.print("60 ug LSB"); + display.display(); + delay(1000); + +// Set up for data display + display.setTextSize(1); // Set text size to normal, 2 is twice normal etc. + display.setTextColor(BLACK); // Set pixel color; 1 on the monochrome screen + display.clearDisplay(); // clears the screen and buffer + + // Read the WHO_AM_I registers, this is a good test of communication + Serial.println("LSM9DS0 9-axis motion sensor..."); + byte c = readByte(LSM9DS0G_ADDRESS, LSM9DS0G_WHO_AM_I_G); // Read WHO_AM_I register for LSM9DS0 gyro + Serial.println("LSM9DS0 gyro"); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0xD4, HEX); + byte d = readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_WHO_AM_I_XM); // Read WHO_AM_I register for LSM9DS0 accel/magnetometer + Serial.println("LSM9DS0 accel/magnetometer"); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x49, HEX); + + + if (c == 0xD4 && d == 0x49) // WHO_AM_I should always be 0xD4 for the gyro and 0x49 for the accel/mag + { + Serial.println("LSM9DS0 is online..."); + + initLSM9DS0(); + Serial.println("LSM9DS0 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + + // get sensor resolutions, only need to do this once + getAres(); + getGres(); + getMres(); + Serial.print("accel sensitivity is "); Serial.print(1./(1000.*aRes)); Serial.println(" LSB/mg"); + Serial.print("gyro sensitivity is "); Serial.print(1./(1000.*gRes)); Serial.println(" LSB/mdps"); + Serial.print("mag sensitivity is "); Serial.print(1./(1000.*mRes)); Serial.println(" LSB/mGauss"); + + accelgyrocalLSM9DS0(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]); + Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]); + + magcalLSM9DS0(magBias); + Serial.println("mag biases (mG)"); Serial.println(1000.*magBias[0]); Serial.println(1000.*magBias[1]); Serial.println(1000.*magBias[2]); + + /* display.clearDisplay(); + + display.setCursor(0, 0); display.print("LSM9DS0bias"); + display.setCursor(0, 8); display.print(" x y z "); + + display.setCursor(0, 16); display.print((int)(1000*accelBias[0])); + display.setCursor(24, 16); display.print((int)(1000*accelBias[1])); + display.setCursor(48, 16); display.print((int)(1000*accelBias[2])); + display.setCursor(72, 16); display.print("mg"); + + display.setCursor(0, 24); display.print(gyroBias[0], 1); + display.setCursor(24, 24); display.print(gyroBias[1], 1); + display.setCursor(48, 24); display.print(gyroBias[2], 1); + display.setCursor(66, 24); display.print("o/s"); + + display.display(); + delay(1000); + */ + } + else + { + Serial.print("Could not connect to LSM9DS0: 0x"); + Serial.println(c, HEX); + while(1) ; // Loop forever if communication doesn't happen + } + + + + // Read the WHO_AM_I register of the altimeter this is a good test of communication + byte e = readByte(LPS25H_ADDRESS, LPS25H_WHOAMI); // Read WHO_AM_I register for LPS25H + Serial.print("LPS25H "); Serial.print("I AM "); Serial.print(e, HEX); Serial.print(" I should be "); Serial.println(0xBD, HEX); + display.clearDisplay(); + display.setCursor(20,0); display.print("LPS25H"); + display.setCursor(0,10); display.print("I AM"); + display.setCursor(0,20); display.print(e, HEX); + display.setCursor(0,30); display.print("I Should Be"); + display.setCursor(0,40); display.print(0xBD, HEX); + display.display(); + delay(1000); + + if (e == 0xBD) // WHO_AM_I should always be 0xBD + { + + LPS25HInit(); // Initialize lPS25H altimeter + + display.clearDisplay(); // clears the screen and buffer + display.setCursor(0, 0); display.print("LPS25H"); + display.setCursor(0,10); display.print("ready "); + display.display(); + delay(1000); + } + else + { + Serial.print("Could not connect to LPS25H: 0x"); + Serial.println(e, HEX); + display.clearDisplay(); // clears the screen and buffer + display.setCursor(0, 0); display.print("LPS25H"); + display.setCursor(0,10); display.print("Error! on 0x"); display.print(e, HEX); + display.display(); + + while(1) ; // Loop forever if communication doesn't happen + } + + } +} + + +void loop() +{ + if(!passThru) { + + // Check event status register, way to check data ready by polling rather than interrupt + uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register + + // Check for errors + if(eventStatus & 0x02) { // error detected, what is it? + + uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister); + if(!errorStatus) { + Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus); + if(errorStatus == 0x11) Serial.print("Magnetometer failure!"); + if(errorStatus == 0x12) Serial.print("Accelerometer failure!"); + if(errorStatus == 0x14) Serial.print("Gyro failure!"); + if(errorStatus == 0x21) Serial.print("Magnetometer initialization failure!"); + if(errorStatus == 0x22) Serial.print("Accelerometer initialization failure!"); + if(errorStatus == 0x24) Serial.print("Gyro initialization failure!"); + if(errorStatus == 0x30) Serial.print("Math error!"); + if(errorStatus == 0x80) Serial.print("Invalid sample rate!"); + } + + // Handle errors ToDo + + } + + // if no errors, see if new data is ready + if(eventStatus & 0x10) { // new acceleration data available + readSENtralAccelData(accelCount); + + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*0.000488; // get actual g value + ay = (float)accelCount[1]*0.000488; + az = (float)accelCount[2]*0.000488; + } + + if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x20) { // new gyro data available + readSENtralGyroData(gyroCount); + + // Now we'll calculate the gyro value into actual dps's + gx = (float)gyroCount[0]*0.153; // get actual dps value + gy = (float)gyroCount[1]*0.153; + gz = (float)gyroCount[2]*0.153; + } + + if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x08) { // new mag data available + readSENtralMagData(magCount); + + // Now we'll calculate the mag value into actual G's + mx = (float)magCount[0]*0.305176; // get actual G value + my = (float)magCount[1]*0.305176; + mz = (float)magCount[2]*0.305176; + } + + if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x04) { // new quaternion data available + readSENtralQuatData(Quat); + } + + // get LPS25H pressure + // if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x40) { // new baro data available + // Serial.println("new Baro data!"); + rawPressure = readSENtralBaroData(); + Pressure = (float) rawPressure*3000.; // pressure in mBar + + // get LPS25H temperature + rawTemperature = readSENtralTempData(); + Temperature = (float) rawTemperature*0.01; // temperature in degrees C + // } + + + } + + + + if(passThru) { + if (readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_STATUS_REG_A) & 0x08) { // check if new accel data is ready + readAccelData(accelCount); // Read the x/y/z adc values + + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + } + + if (readByte(LSM9DS0G_ADDRESS, LSM9DS0G_STATUS_REG_G) & 0x08) { // check if new gyro data is ready + readGyroData(gyroCount); // Read the x/y/z adc values + + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + } + + if (readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_STATUS_REG_M) & 0x08) { // check if new mag data is ready + readMagData(magCount); // Read the x/y/z adc values + + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + mx = (float)magCount[0]*mRes - magBias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes - magBias[1]; + mz = (float)magCount[2]*mRes - magBias[2]; + } + } + + + // keep track of rates + Now = micros(); + deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update + lastUpdate = Now; + + sum += deltat; // sum for averaging filter update rate + sumCount++; + + // Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer; + // the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro! + // We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter. + // For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like + // in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention. + // This is ok by aircraft orientation standards! + // Pass gyro rate as rad/s + MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz); +// if(passThru)MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz); + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = millis() - count; + if (delt_t > 1000) { // update LCD once per half-second independent of read rate + + if(SerialDebug) { + Serial.print("ax = "); Serial.print((int)1000*ax); + Serial.print(" ay = "); Serial.print((int)1000*ay); + Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg"); + Serial.print("gx = "); Serial.print( gx, 2); + Serial.print(" gy = "); Serial.print( gy, 2); + Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s"); + if(!passThru) { + Serial.print("mx = "); Serial.print( mx); + Serial.print(" my = "); Serial.print( my); + Serial.print(" mz = "); Serial.print( mz); Serial.println(" mG"); + } + else { + Serial.print("mx = "); Serial.print( (int)1000*mx); + Serial.print(" my = "); Serial.print( (int)1000*my); + Serial.print(" mz = "); Serial.print( (int)1000*mz); Serial.println(" mG"); + } + + + Serial.println("Software quaternions:"); + Serial.print("q0 = "); Serial.print(q[0]); + Serial.print(" qx = "); Serial.print(q[1]); + Serial.print(" qy = "); Serial.print(q[2]); + Serial.print(" qz = "); Serial.println(q[3]); + Serial.println("Hardware quaternions:"); + Serial.print("Q0 = "); Serial.print(Quat[3]); + Serial.print(" Qx = "); Serial.print(Quat[0]); + Serial.print(" Qy = "); Serial.print(Quat[1]); + Serial.print(" Qz = "); Serial.println(Quat[2]); + + float altitude = 145366.45f*(1.0f - pow((Pressure/1013.25f), 0.190284f)); + + Serial.print("Altimeter temperature = "); Serial.print( Temperature, 2); Serial.println(" C"); // temperature in degrees Celsius + Serial.print("Altimeter temperature = "); Serial.print(9.*Temperature/5. + 32., 2); Serial.println(" F"); // temperature in degrees Fahrenheit + Serial.print("Altimeter pressure = "); Serial.print(Pressure, 2); Serial.println(" mbar");// pressure in millibar + Serial.print("Altitude = "); Serial.print(altitude, 2); Serial.println(" feet"); + + } + + +// tempCount = readTempData(); // Read the gyro adc values +// temperature = ((float) tempCount/8. + 25.0); // Gyro chip temperature in degrees Centigrade +// Print temperature in degrees Centigrade +// Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C + if(passThru) { + // Get altimeter data + if(readByte(LPS25H_ADDRESS, LPS25H_STATUS_REG) & 0x20) { // check if new altimeter data ready + Pressure = (float) readAltimeterPressure()/4096.0f; + Temperature = (float) readAltimeterTemperature()/480.0f + 42.5f; + } + float altitude = 145366.45f*(1.0f - pow((Pressure/1013.25f), 0.190284f)); + + Serial.print("Altimeter temperature = "); Serial.print( Temperature, 2); Serial.println(" C"); // temperature in degrees Celsius + Serial.print("Altimeter temperature = "); Serial.print(9.*Temperature/5. + 32., 2); Serial.println(" F"); // temperature in degrees Fahrenheit + Serial.print("Altimeter pressure = "); Serial.print(Pressure, 2); Serial.println(" mbar");// pressure in millibar + Serial.print("Altitude = "); Serial.print(altitude, 2); Serial.println(" feet"); + } + + + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + //Software AHRS: + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + roll *= 180.0f / PI; + //Hardware AHRS: + Yaw = atan2(2.0f * (Quat[0] * Quat[1] + Quat[3] * Quat[2]), Quat[3] * Quat[3] + Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2]); + Pitch = -asin(2.0f * (Quat[0] * Quat[2] - Quat[3] * Quat[1])); + Roll = atan2(2.0f * (Quat[3] * Quat[0] + Quat[1] * Quat[2]), Quat[3] * Quat[3] - Quat[0] * Quat[0] - Quat[1] * Quat[1] + Quat[2] * Quat[2]); + Pitch *= 180.0f / PI; + Yaw *= 180.0f / PI; + Yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + Roll *= 180.0f / PI; + + // Or define output variable according to the Android system, where heading (0 to 260) is defined by the angle between the y-axis + // and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90) + // In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis + // points toward the right of the device. + // + + if(SerialDebug) { + Serial.print("Software yaw, pitch, roll: "); + Serial.print(yaw, 2); + Serial.print(", "); + Serial.print(pitch, 2); + Serial.print(", "); + Serial.println(roll, 2); + + Serial.print("Hardware Yaw, Pitch, Roll: "); + Serial.print(Yaw, 2); + Serial.print(", "); + Serial.print(Pitch, 2); + Serial.print(", "); + Serial.println(Roll, 2); + + Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz"); + } + + Serial.print(millis()/1000); Serial.print(","); + Serial.print(yaw); Serial.print(","); Serial.print(pitch); Serial.print(","); Serial.print(roll); Serial.print(","); + Serial.print(Yaw); Serial.print(","); Serial.print(Pitch); Serial.print(","); Serial.print(Roll); Serial.println(","); + + /* + display.clearDisplay(); + + display.setCursor(0, 0); display.print(" x y z "); + + display.setCursor(0, 8); display.print((int)(1000*ax)); + display.setCursor(24, 8); display.print((int)(1000*ay)); + display.setCursor(48, 8); display.print((int)(1000*az)); + display.setCursor(72, 8); display.print("mg"); + + // tempCount = readACCTempData(); // Read the gyro adc values + // temperature = ((float) tempCount) / 2.0 + 23.0; // Gyro chip temperature in degrees Centigrade + // display.setCursor(64, 0); display.print(9.*temperature/5. + 32., 0); display.print("F"); + + display.setCursor(0, 16); display.print((int)(gx)); + display.setCursor(24, 16); display.print((int)(gy)); + display.setCursor(48, 16); display.print((int)(gz)); + display.setCursor(66, 16); display.print("o/s"); + + display.setCursor(0, 24); display.print((int)(mx)); + display.setCursor(24, 24); display.print((int)(my)); + display.setCursor(48, 24); display.print((int)(mz)); + display.setCursor(72, 24); display.print("mG"); + + display.setCursor(0, 32); display.print((int)(yaw)); + display.setCursor(24, 32); display.print((int)(pitch)); + display.setCursor(48, 32); display.print((int)(roll)); + display.setCursor(66, 32); display.print("ypr"); + + +// display.setCursor(0, 40); display.print(altitude, 0); display.print("ft"); +// display.setCursor(68, 0); display.print(9.*Temperature/5. + 32., 0); + display.setCursor(42, 40); display.print((float) sumCount / (1000.*sum), 2); display.print("kHz"); + display.display(); +*/ + digitalWrite(myLed, !digitalRead(myLed)); + count = millis(); + sumCount = 0; + sum = 0; + } + +} + +//=================================================================================================================== +//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data +//=================================================================================================================== +void getMres() { + switch (Mscale) + { + // Possible magnetometer scales (and their register bit settings) are: + // 2 Gauss (00), 4 Gauss (01), 8 Gauss (10) and 12 Gauss (11) + case MFS_2G: + mRes = 2.0/32768.0; + break; + case MFS_4G: + mRes = 4.0/32768.0; + break; + case MFS_8G: + mRes = 8.0/32768.0; + break; + case MFS_12G: + mRes = 12.0/32768.0; + break; + } +} + +void getGres() { + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 245 DPS (00), 500 DPS (01), and 2000 DPS (11). + case GFS_245DPS: + gRes = 245.0/32768.0; + break; + case GFS_500DPS: + gRes = 500.0/32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0/32768.0; + break; + } +} + +void getAres() { + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (000), 4 Gs (001), 6 gs (010), 8 Gs (011), and 16 gs (100). + case AFS_2G: + aRes = 2.0/32768.0; + break; + case AFS_4G: + aRes = 4.0/32768.0; + break; + case AFS_6G: + aRes = 6.0/32768.0; + break; + case AFS_8G: + aRes = 8.0/32768.0; + break; + case AFS_16G: + aRes = 16.0/32768.0; + break; + } +} + + +void readAccelData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_A, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; + destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; +} + + +void readGyroData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(LSM9DS0G_ADDRESS, 0x80 | LSM9DS0G_OUT_X_L_G, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; + destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; +} + +void readMagData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_M, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian + destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; +} + +int16_t readTempData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_TEMP_L_XM, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a 16-bit signed value +} + + +void initLSM9DS0() +{ + // configure the gyroscope, enable normal mode = power on + writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG1_G, Godr << 6 | Gbw << 4 | 0x0F); + writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG4_G, Gscale << 4 | 0x80); // enable bloack data update + // configure the accelerometer-specify ODR (sample rate) selection with Aodr, enable block data update + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG1_XM, Aodr << 4 | 0x0F); + // configure the accelerometer-specify bandwidth and full-scale selection with Abw, Ascale + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG2_XM, Abw << 6 | Ascale << 3); + // enable temperature sensor, set magnetometer ODR (sample rate) and resolution mode + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG5_XM, 0x80 | Mres << 5 | Modr << 2); + // set magnetometer full scale + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG6_XM, Mscale << 5 & 0x60); + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG7_XM, 0x00); // select continuous conversion mode + } + + +// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average +// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. +void accelgyrocalLSM9DS0(float * dest1, float * dest2) +{ + uint8_t data[6] = {0, 0, 0, 0, 0, 0}; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + uint16_t samples, ii; + + Serial.println("Calibrating gyro..."); + + // First get gyro bias + byte c = readByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G); + writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G, c | 0x40); // Enable gyro FIFO + delay(400); // Wait for change to take effect + writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples + delay(2000); // delay 1000 milliseconds to collect FIFO samples + + samples = (readByte(LSM9DS0G_ADDRESS, LSM9DS0G_FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples + + for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO + int16_t gyro_temp[3] = {0, 0, 0}; + readBytes(LSM9DS0G_ADDRESS, 0x80 | LSM9DS0G_OUT_X_L_G, 6, &data[0]); + gyro_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO + gyro_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]); + gyro_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]); + + gyro_bias[0] += (int32_t) gyro_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + gyro_bias[1] += (int32_t) gyro_temp[1]; + gyro_bias[2] += (int32_t) gyro_temp[2]; + } + + gyro_bias[0] /= samples; // average the data + gyro_bias[1] /= samples; + gyro_bias[2] /= samples; + + dest1[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s + dest1[1] = (float)gyro_bias[1]*gRes; + dest1[2] = (float)gyro_bias[2]*gRes; + + c = readByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G); + writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G, c & ~0x40); //Disable gyro FIFO + delay(200); + writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode + + Serial.println("Calibrating accel..."); + + // now get the accelerometer bias + c = readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM); + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM, c | 0x40); // Enable gyro FIFO + delay(200); // Wait for change to take effect + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_FIFO_CTRL_REG, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples + delay(1000); // delay 1000 milliseconds to collect FIFO samples + + samples = (readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_FIFO_SRC_REG) & 0x1F); // Read number of stored samples + + for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO + int16_t accel_temp[3] = {0, 0, 0}; + readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_A, 6, &data[0]); + accel_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]); + accel_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]); + + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + } + + accel_bias[0] /= samples; // average the data + accel_bias[1] /= samples; + accel_bias[2] /= samples; + + if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) (1.0/aRes);} // Remove gravity from the z-axis accelerometer bias calculation + else {accel_bias[2] += (int32_t) (1.0/aRes);} + + dest2[0] = (float)accel_bias[0]*aRes; // Properly scale the data to get g + dest2[1] = (float)accel_bias[1]*aRes; + dest2[2] = (float)accel_bias[2]*aRes; + + c = readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM); + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM, c & ~0x40); //Disable accel FIFO + delay(200); + writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_FIFO_CTRL_REG, 0x00); // Enable accel bypass mode +} + +void magcalLSM9DS0(float * dest1) +{ + uint8_t data[6]; // data array to hold mag x, y, z, data + uint16_t ii = 0, sample_count = 0; + int32_t mag_bias[3] = {0, 0, 0}; + int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0}; + + Serial.println("Mag Calibration: Wave device in a figure eight until done!"); + delay(4000); + + sample_count = 128; + for(ii = 0; ii < sample_count; ii++) { + int16_t mag_temp[3] = {0, 0, 0}; + readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_M, 6, &data[0]); // Read the six raw data registers into data array + mag_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]) ; // Form signed 16-bit integer for each sample in FIFO + mag_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]) ; + mag_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]) ; + for (int jj = 0; jj < 3; jj++) { + if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; + if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; + } + delay(105); // at 10 Hz ODR, new mag data is available every 100 ms + } + +// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]); +// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]); +// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); + + mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts + mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts + mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts + + dest1[0] = (float) mag_bias[0]*mRes; // save mag biases in G for main program + dest1[1] = (float) mag_bias[1]*mRes; + dest1[2] = (float) mag_bias[2]*mRes; + + /* //write biases to accelerometermagnetometer offset registers as counts); + writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_X_REG_L_M, (int16_t) mag_bias[0] & 0xFF); + writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_X_REG_H_M, ((int16_t)mag_bias[0] >> 8) & 0xFF); + writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Y_REG_L_M, (int16_t) mag_bias[1] & 0xFF); + writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Y_REG_H_M, ((int16_t)mag_bias[1] >> 8) & 0xFF); + writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Z_REG_L_M, (int16_t) mag_bias[2] & 0xFF); + writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Z_REG_H_M, ((int16_t)mag_bias[2] >> 8) & 0xFF); + */ + Serial.println("Mag Calibration done!"); +} + +int32_t readAltimeterPressure() +{ + uint8_t rawData[3]; // 24-bit pressure register data stored here + readBytes(LPS25H_ADDRESS, (LPS25H_PRESS_OUT_XL | 0x80), 3, &rawData[0]); // bit 7 must be one to read multiple bytes + return (int32_t) ((int32_t) rawData[2] << 16 | (int32_t) rawData[1] << 8 | rawData[0]); +} + +int16_t readAltimeterTemperature() +{ + uint8_t rawData[2]; // 16-bit pressure register data stored here + readBytes(LPS25H_ADDRESS, (LPS25H_TEMP_OUT_L | 0x80), 2, &rawData[0]); // bit 7 must be one to read multiple bytes + return (int16_t)((int16_t) rawData[1] << 8 | rawData[0]); +} + + +void LPS25HInit() +{ + // turn on the altimeter by setting bit 7 to one + // set sample rate by setting bits 6:4 + // enable interrupt circuit by setting bit 3 to one + // make sure data not updated during read by setting block data more (bit 2) to 1 + // writeByte(LPS25H_ADDRESS, LPS25H_CTRL_REG1, 0x80 | PODR << 4 | 0x08 | 0x04); + // writeByte(LPS25H_ADDRESS, LPS25H_CTRL_REG4, 0x01); // set interrupt pin to signal data ready + // writeByte(LPS25H_ADDRESS, LPS25H_RES_CONF, Tavg << 2 | Pavg); // specify temperature and pressure internal averaging + // or use ultra low-power mode + // To reduce power consumption while keeping a low noise figure, reduce the temperature and pressure averaging + // and reduce ODR to the minimum and enable the digital filter (FIFO) + writeByte(LPS25H_ADDRESS, LPS25H_RES_CONF, 0x05); // set Tavg = 16 and Pavg = 32 internal averaging + writeByte(LPS25H_ADDRESS, LPS25H_FIFO_CTRL, 0xDF); // set FIFO mean mode with average on two samples or more + writeByte(LPS25H_ADDRESS, LPS25H_CTRL_REG2, 0x21); // FIFO enabled, decimation disabled + writeByte(LPS25H_ADDRESS, LPS25H_CTRL_REG1, 0x90); // power on device, set to 1 Hz sample rate +} + + +// I2C read/write functions for the LSM9DS0and AK8963 sensors + + void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer +} + + uint8_t readByte(uint8_t address, uint8_t subAddress) +{ + uint8_t data; // `data` will store the register data + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive +// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive +// Wire.requestFrom(address, 1); // Read one byte from slave register address + Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register +} + + void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive +// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; +// Wire.requestFrom(address, count); // Read bytes from slave register address + Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address + while (Wire.available()) { + dest[i++] = Wire.read(); } // Put read results in the Rx buffer +} + + + +static inline float uint32_reg_to_float (uint8_t *buf) +{ + union { + uint32_t ui32; + float f; + } u; + + u.ui32 = (((uint32_t)buf[0]) + + (((uint32_t)buf[1]) << 8) + + (((uint32_t)buf[2]) << 16) + + (((uint32_t)buf[3]) << 24)); + return u.f; +} + + +void float_to_bytes (float param_val, uint8_t *buf) { + union { + float f; + uint8_t comp[sizeof(float)]; + } u; + u.f = param_val; + for (uint8_t i=0; i < sizeof(float); i++) { + buf[i] = u.comp[i]; + } + //Convert to LITTLE ENDIAN + for (uint8_t i=0; i < sizeof(float); i++) { + buf[i] = buf[(sizeof(float)-1) - i]; + } +} + +void EM7180_set_gyro_FS (uint16_t gyro_fs) { + uint8_t bytes[4], STAT; + bytes[0] = gyro_fs & (0xFF); + bytes[1] = (gyro_fs >> 8) & (0xFF); + bytes[2] = 0x00; + bytes[3] = 0x00; + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT==0xCB)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) { + uint8_t bytes[4], STAT; + bytes[0] = mag_fs & (0xFF); + bytes[1] = (mag_fs >> 8) & (0xFF); + bytes[2] = acc_fs & (0xFF); + bytes[3] = (acc_fs >> 8) & (0xFF); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT==0xCA)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_integer_param (uint8_t param, uint32_t param_val) { + uint8_t bytes[4], STAT; + bytes[0] = param_val & (0xFF); + bytes[1] = (param_val >> 8) & (0xFF); + bytes[2] = (param_val >> 16) & (0xFF); + bytes[3] = (param_val >> 24) & (0xFF); + param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT==param)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_float_param (uint8_t param, float param_val) { + uint8_t bytes[4], STAT; + float_to_bytes (param_val, &bytes[0]); + param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte + while(!(STAT==param)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} +void readSENtralQuatData(float * destination) +{ + uint8_t rawData[16]; // x/y/z quaternion register data stored here + readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array + destination[0] = uint32_reg_to_float (&rawData[0]); + destination[1] = uint32_reg_to_float (&rawData[4]); + destination[2] = uint32_reg_to_float (&rawData[8]); + destination[3] = uint32_reg_to_float (&rawData[12]); + +} + +void readSENtralAccelData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); +} + +void readSENtralGyroData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); +} + +void readSENtralMagData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); +} + +int16_t readSENtralBaroData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(EM7180_ADDRESS, EM7180_Baro, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value +} + +int16_t readSENtralTempData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(EM7180_ADDRESS, EM7180_Temp, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value +} + + +void SENtralPassThroughMode() +{ + // First put SENtral in standby mode + uint8_t c = readByte(EM7180_ADDRESS, EM7180_AlgorithmControl); + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01); +// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); +// Serial.print("c = "); Serial.println(c); +// Verify standby status +// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) { + Serial.println("SENtral in standby mode"); + // Place SENtral in pass-through mode + writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); + if(readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) { + Serial.println("SENtral in pass-through mode"); + } + else { + Serial.println("ERROR! SENtral not in pass-through mode!"); + } + +// } +// else { Serial.println("ERROR! SENtral not in standby mode!"); +// } + + } + +// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor +// since the address is defined by two bytes + + void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data) +{ + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer +} + + + void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) +{ + if(count > 128) { + count = 128; + Serial.print("Page count cannot be more than 128 bytes!"); + } + + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + for(uint8_t i=0; i < count; i++) { + Wire.write(dest[i]); // Put data in Tx buffer + } + Wire.endTransmission(); // Send the Tx buffer +} + + + uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2) +{ + uint8_t data; // `data` will store the register data + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive +// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive +// Wire.requestFrom(address, 1); // Read one byte from slave register address + Wire.requestFrom(device_address, (size_t) 1); // Read one byte from slave register address + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register +} + + void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) +{ + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive +// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; +// Wire.requestFrom(address, count); // Read bytes from slave register address + Wire.requestFrom(device_address, (size_t) count); // Read bytes from slave register address + while (Wire.available()) { + dest[i++] = Wire.read(); } // Put read results in the Rx buffer +} + + + +// simple function to scan for I2C devices on the bus +void I2Cscan() +{ + // scan for i2c devices + byte error, address; + int nDevices; + + Serial.println("Scanning..."); + + nDevices = 0; + for(address = 1; address < 127; address++ ) + { + // The i2c_scanner uses the return value of + // the Write.endTransmisstion to see if + // a device did acknowledge to the address. + Wire.beginTransmission(address); + error = Wire.endTransmission(); + + if (error == 0) + { + Serial.print("I2C device found at address 0x"); + if (address<16) + Serial.print("0"); + Serial.print(address,HEX); + Serial.println(" !"); + + nDevices++; + } + else if (error==4) + { + Serial.print("Unknow error at address 0x"); + if (address<16) + Serial.print("0"); + Serial.println(address,HEX); + } + } + if (nDevices == 0) + Serial.println("No I2C devices found\n"); + else + Serial.println("done\n"); +}