diff --git a/WarmStartandAccelCal/EM71280_MPU9250_BMP280_M24512DFC_WS_Acc_Cal.ino b/WarmStartandAccelCal/EM71280_MPU9250_BMP280_M24512DFC_WS_Acc_Cal.ino new file mode 100644 index 0000000..824f0b1 --- /dev/null +++ b/WarmStartandAccelCal/EM71280_MPU9250_BMP280_M24512DFC_WS_Acc_Cal.ino @@ -0,0 +1,1997 @@ +/* EM7180_MPU9250_BMP280_t3 Basic Example Code + by: Kris Winer + date: September 11, 2015 + license: Beerware - Use this code however you'd like. If you + find it useful you can buy me a beer some time. + + The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors, + in this case the MPU9250 (with embedded MPU9250 + AK8963C), and does sensor fusion with quaternions as its output. The SENtral loads firmware from the + on-board M24512DRC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus, + and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and + heading/pitch/roll, if selected. + + This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor, + getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to + allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and + Mahony filter algorithms to compare with the hardware sensor fusion results. + Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. + + This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master, + the MPU9250 9-axis motion sensor (accel/gyro/mag) as slave, a BMP280 pressure/temperature sensor, and an M24512DRC + 512kbit (64 kByte) EEPROM as slave all connected via I2C. The SENtral can use the pressure data in the sensor fusion + yet and there is a driver for the BMP280 in the SENtral firmware. + + This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h. + The BMP280 is a simple but high resolution pressure sensor, which can be used in its high resolution + mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of + only 1 microAmp. The choice will depend on the application. + + SDA and SCL should have external pull-up resistors (to 3.3V). + 4k7 resistors are on the EM7180+MPU9250+BMP280+M24512DRC Mini Add-On board for Teensy 3.1. + + Hardware setup: + EM7180 Mini Add-On ------- Teensy 3.1 + VDD ---------------------- 3.3V + SDA ----------------------- 17 + SCL ----------------------- 16 + GND ---------------------- GND + INT------------------------ 8 + + Note: All the sensors n this board are I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library. + Because the sensors are not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. + */ + +#include "Arduino.h" +#include "Globals.h" +#include +#include + +#define SerialDebug true +//#define SerialDebug false + +bool passThru = false; +//bool passThru = true; + +void setup() +{ + // Setup for Master mode, pins 16/17, external pullups, 400kHz for Teensy 3.1 + Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400); + delay(100); + + delay(100); + Serial.begin(115200); + delay(5000); + + // Set up the interrupt pin, its set as active high, push-pull + pinMode(myLed, OUTPUT); + digitalWrite(myLed, LOW); + + // should detect SENtral at 0x28 + I2Cscan(); + + // Read SENtral device information + uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1); + uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2); + Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609"); + uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1); + uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2); + Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2); + uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID); + Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80"); + uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID); + Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02"); + + // Give some time to read the screen + delay(1000); + + // Check which sensors can be detected by the EM7180 + uint8_t featureflag = readByte(EM7180_ADDRESS, EM7180_FeatureFlags); + if(featureflag & 0x01) Serial.println("A barometer is installed"); + if(featureflag & 0x02) Serial.println("A humidity sensor is installed"); + if(featureflag & 0x04) Serial.println("A temperature sensor is installed"); + if(featureflag & 0x08) Serial.println("A custom sensor is installed"); + if(featureflag & 0x10) Serial.println("A second custom sensor is installed"); + if(featureflag & 0x20) Serial.println("A third custom sensor is installed"); + + // Give some time to read the screen + delay(1000); + + // Check SENtral status, make sure EEPROM upload of firmware was accomplished + byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); + int count = 0; + while(!STAT) + { + writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); + delay(500); + count++; + STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); + if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); + if(count > 10) break; + } + if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!"); + if(!passThru) + { + // Take user input to choose Warm Start or not... + // "1" from the keboard is ASCII "1" which gives integer value 49 + // "0" from the keboard is ASCII "0" which gives integer value 48 + Serial.println("Send '1' for Warm Start, '0' for no Warm Start"); + serial_input = Serial.read(); + while(!(serial_input == 49) && !(serial_input == 48)) + { + serial_input = Serial.read(); + delay(500); + } + if(serial_input == 49) + { + warm_start = 1; + } else + { + warm_start = 0; + } + if(warm_start) + { + Serial.println("!!!Warm Start active!!!"); + + // Put the Sentral in pass-thru mode + WS_PassThroughMode(); + + // Fetch the WarmStart data from the M24512DFM I2C EEPROM + readSenParams(); + + // Take Sentral out of pass-thru mode and re-start algorithm + WS_Resume(); + } else + { + Serial.println("***No Warm Start***"); + } + // Take user input to choose Warm Start or not... + // "2" from the keboard is ASCII "1" which gives integer value 50 + // "0" from the keboard is ASCII "0" which gives integer value 48 + Serial.println("Send '2' to apply Accelerometer Cal, '0' to not apply Accelerometer Cal"); + serial_input = Serial.read(); + while(!(serial_input == 50) && !(serial_input == 48)) + { + serial_input = Serial.read(); + delay(500); + } + if(serial_input == 50) + { + accel_cal = 1; + } else + { + accel_cal = 0; + } + if(accel_cal) + { + Serial.println("!!!Accel Cal Active!!!"); + + // Put the Sentral in pass-thru mode + WS_PassThroughMode(); + + // Fetch the WarmStart data from the M24512DFM I2C EEPROM + readAccelCal(); + Serial.print("X-acc max: "); Serial.println(global_conf.accZero_max[0]); + Serial.print("Y-acc max: "); Serial.println(global_conf.accZero_max[1]); + Serial.print("Z-acc max: "); Serial.println(global_conf.accZero_max[2]); + Serial.print("X-acc min: "); Serial.println(global_conf.accZero_min[0]); + Serial.print("Y-acc min: "); Serial.println(global_conf.accZero_min[1]); + Serial.print("Z-acc min: "); Serial.println(global_conf.accZero_min[2]); + + // Take Sentral out of pass-thru mode and re-start algorithm + WS_Resume(); + } else + { + Serial.println("***No Accel Cal***"); + } + } + + // Give some time to read the screen + delay(1000); + + // Set up the SENtral as sensor bus in normal operating mode + if(!passThru) + { + // Set SENtral in initialized state to configure registers + writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); + + // Load Accel Cal + if(accel_cal) + { + EM7180_acc_cal_upload(); + } + + // Force initialize + writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); + + // Load Warm Start parameters + if(warm_start) + { + EM7180_set_WS_params(); + } + + // Set SENtral in initialized state to configure registers + writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); + + //Setup LPF bandwidth (BEFORE setting ODR's) + writeByte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, 0x03); // 41Hz + writeByte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, 0x01); // 184Hz + + // Set accel/gyro/mage desired ODR rates + writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 100 Hz + writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x64); // 100 Hz + writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x14); // 200/10 Hz + writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x14); // 200/10 Hz + writeByte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | 0x32); // set enable bit and set Baro rate to 25 Hz + + // Configure operating mode + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data + + // Enable interrupt to host upon certain events + // choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), + // new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) + writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); + + // Enable EM7180 run mode + writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode + delay(100); + + // EM7180 parameter adjustments + Serial.println("Beginning Parameter Adjustments"); + + // Read sensor default FS values from parameter space + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process + byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4A)) + { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); + EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); + Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); + Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4B)) + { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); + Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm + + //Disable stillness mode + EM7180_set_integer_param (0x49, 0x00); + + //Write desired sensor full scale ranges to the EM7180 + EM7180_set_mag_acc_FS (0x3E8, 0x08); // 1000 uT, 8 g + EM7180_set_gyro_FS (0x7D0); // 2000 dps + + // Read sensor new FS values from parameter space + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4A)) + { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); + EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); + Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); + Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(param_xfer==0x4B)) + { + param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); + Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm + + // Read EM7180 status + uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus); + if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode"); + uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); + if(algoStatus & 0x01) Serial.println(" EM7180 standby status"); + if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow"); + if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode"); + if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed"); + if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected"); + if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data"); + uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); + if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!"); + uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); + if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset"); + if(eventStatus & 0x02) Serial.println(" EM7180 Error"); + if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result"); + if(eventStatus & 0x08) Serial.println(" EM7180 new mag result"); + if(eventStatus & 0x10) Serial.println(" EM7180 new accel result"); + if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); + + // Give some time to read the screen + delay(1000); + + // Check sensor status + uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus); + Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus); + if(sensorStatus & 0x01) Serial.print("Magnetometer not acknowledging!"); + if(sensorStatus & 0x02) Serial.print("Accelerometer not acknowledging!"); + if(sensorStatus & 0x04) Serial.print("Gyro not acknowledging!"); + if(sensorStatus & 0x10) Serial.print("Magnetometer ID not recognized!"); + if(sensorStatus & 0x20) Serial.print("Accelerometer ID not recognized!"); + if(sensorStatus & 0x40) Serial.print("Gyro ID not recognized!"); + + Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz"); + Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz"); + Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz"); + Serial.print("Actual BaroRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualBaroRate)); Serial.println(" Hz"); + Serial.println(""); Serial.println("*******************************************"); + Serial.println("Send '1' to store Warm Start configuration"); + Serial.println("*******************************************"); Serial.println(""); + + // Give some time to read the screen + delay(1000); + } + + // If pass through mode desired, set it up here + if(passThru) + { + // Put EM7180 SENtral into pass-through mode + SENtralPassThroughMode(); + delay(1000); + + // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages) + I2Cscan(); + + // Read first page of EEPROM + uint8_t data[128]; + M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data); + Serial.println("EEPROM Signature Byte"); + Serial.print(data[0], HEX); Serial.println(" Should be 0x2A"); + Serial.print(data[1], HEX); Serial.println(" Should be 0x65"); + for (int i = 0; i < 128; i++) + { + Serial.print(data[i], HEX); Serial.print(" "); + } + + // Set up the interrupt pin, its set as active high, push-pull + pinMode(myLed, OUTPUT); + digitalWrite(myLed, HIGH); + + // Read the WHO_AM_I register, this is a good test of communication + Serial.println("MPU9250 9-axis motion sensor..."); + byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 + Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX); + if (c == 0x71) // WHO_AM_I should always be 0x71 + { + Serial.println("MPU9250 is online..."); + MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values + Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value"); + Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value"); + Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value"); + Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value"); + Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value"); + Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value"); + + delay(1000); + + // get sensor resolutions, only need to do this once + getAres(); + getGres(); + getMres(); + + Serial.println(" Calibrate gyro and accel"); + accelgyrocalMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]); + Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]); + + delay(1000); + + initMPU9250(); + Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); + I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages) + + // Read the WHO_AM_I register of the magnetometer, this is a good test of communication + byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for AK8963 + Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX); + + delay(1000); + + // Get magnetometer calibration from AK8963 ROM + // Initialize device for active mode read of magnetometer + initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode...."); + + magcalMPU9250(magBias, magScale); + Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]); + Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]); + delay(2000); // add delay to see results before serial spew of data + + if(SerialDebug) + { + Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2); + Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2); + Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2); + } + + delay(1000); + + // Read the WHO_AM_I register of the BMP280 this is a good test of communication + // Read WHO_AM_I register for BMP280 + byte f = readByte(BMP280_ADDRESS, BMP280_ID); + Serial.print("BMP280 "); + Serial.print("I AM "); + Serial.print(f, HEX); + Serial.print(" I should be "); + Serial.println(0x58, HEX); + Serial.println(" "); + + delay(1000); + + // reset BMP280 before initilization + writeByte(BMP280_ADDRESS, BMP280_RESET, 0xB6); + + delay(100); + + // Initialize BMP280 altimeter + BMP280Init(); + Serial.println("Calibration coeficients:"); + Serial.print("dig_T1 ="); + Serial.println(dig_T1); + Serial.print("dig_T2 ="); + Serial.println(dig_T2); + Serial.print("dig_T3 ="); + Serial.println(dig_T3); + Serial.print("dig_P1 ="); + Serial.println(dig_P1); + Serial.print("dig_P2 ="); + Serial.println(dig_P2); + Serial.print("dig_P3 ="); + Serial.println(dig_P3); + Serial.print("dig_P4 ="); + Serial.println(dig_P4); + Serial.print("dig_P5 ="); + Serial.println(dig_P5); + Serial.print("dig_P6 ="); + Serial.println(dig_P6); + Serial.print("dig_P7 ="); + Serial.println(dig_P7); + Serial.print("dig_P8 ="); + Serial.println(dig_P8); + Serial.print("dig_P9 ="); + Serial.println(dig_P9); + + delay(1000); + } + else + { + Serial.print("Could not connect to MPU9250: 0x"); + Serial.println(c, HEX); + while(1) ; // Loop forever if communication doesn't happen + } + } +} + +void loop() +{ + if(!passThru) + { + serial_input = Serial.read(); + if (serial_input == 49) + { + delay(100); + EM7180_get_WS_params(); + + // Put the Sentral in pass-thru mode + WS_PassThroughMode(); + + // Store WarmStart data to the M24512DFM I2C EEPROM + writeSenParams(); + + // Take Sentral out of pass-thru mode and re-start algorithm + WS_Resume(); + warm_start_saved = 1; + } + if (serial_input == 50) + { + calibratingA = 512; + } + + // Check event status register, way to chech data ready by polling rather than interrupt + uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register + + // Check for errors + // Error detected, what is it? + if(eventStatus & 0x02) + { + uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister); + if(!errorStatus) + { + Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus); + if(errorStatus == 0x11) Serial.print("Magnetometer failure!"); + if(errorStatus == 0x12) Serial.print("Accelerometer failure!"); + if(errorStatus == 0x14) Serial.print("Gyro failure!"); + if(errorStatus == 0x21) Serial.print("Magnetometer initialization failure!"); + if(errorStatus == 0x22) Serial.print("Accelerometer initialization failure!"); + if(errorStatus == 0x24) Serial.print("Gyro initialization failure!"); + if(errorStatus == 0x30) Serial.print("Math error!"); + if(errorStatus == 0x80) Serial.print("Invalid sample rate!"); + } + // Handle errors ToDo + } + // if no errors, see if new data is ready + // new acceleration data available + if(eventStatus & 0x10) + { + readSENtralAccelData(accelCount); + + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*0.000488; // get actual g value + ay = (float)accelCount[1]*0.000488; + az = (float)accelCount[2]*0.000488; + + // Manages accelerometer calibration; is active when calibratingA > 0 + Accel_cal_check(); + } + + if(eventStatus & 0x20) + { + // new gyro data available + readSENtralGyroData(gyroCount); + + // Now we'll calculate the gyro value into actual dps's + gx = (float)gyroCount[0]*0.153; // get actual dps value + gy = (float)gyroCount[1]*0.153; + gz = (float)gyroCount[2]*0.153; + } + if(eventStatus & 0x08) + { + // new mag data available + readSENtralMagData(magCount); + + // Now we'll calculate the mag value into actual G's + // get actual G value + mx = (float)magCount[0]*0.305176; + my = (float)magCount[1]*0.305176; + mz = (float)magCount[2]*0.305176; + } + + if(eventStatus & 0x04) + { + readSENtralQuatData(Quat); + } + + // get BMP280 pressure + // new baro data available + if(eventStatus & 0x40) + { + rawPressure = readSENtralBaroData(); + pressure = (float)rawPressure*0.01f +1013.25f; // pressure in mBar + + // get BMP280 temperature + rawTemperature = readSENtralTempData(); + temperature = (float) rawTemperature*0.01; // temperature in degrees C + } + } + + if(passThru) + { + // If intPin goes high, all data registers have new data + readAccelData(accelCount); // Read the x/y/z adc values + + // Now we'll calculate the acceleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + // Read the x/y/z adc values + readGyroData(gyroCount); + + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes; + gz = (float)gyroCount[2]*gRes; + readMagData(magCount); // Read the x/y/z adc values + + // Calculate the magnetometer values in milliGauss + mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2]; + } + + // keep track of rates + Now = micros(); + + // set integration time by time elapsed since last filter update + deltat = ((Now - lastUpdate)/1000000.0f); + lastUpdate = Now; + + sum += deltat; // sum for averaging filter update rate + sumCount++; + + // Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer; + // the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro! + // We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter. + // For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like + // in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention. + // This is ok by aircraft orientation standards! + // Pass gyro rate as rad/s + MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz); +// if(passThru)MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, -my, mx, mz); + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = millis() - count; + + // update LCD once per half-second independent of read rate + if (delt_t > 500) + { + + if(SerialDebug) + { + Serial.print("ax = "); Serial.print((int)1000*ax); + Serial.print(" ay = "); Serial.print((int)1000*ay); + Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg"); + Serial.print("gx = "); Serial.print( gx, 2); + Serial.print(" gy = "); Serial.print( gy, 2); + Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s"); + Serial.print("mx = "); Serial.print( (int)mx); + Serial.print(" my = "); Serial.print( (int)my); + Serial.print(" mz = "); Serial.print( (int)mz); Serial.println(" mG"); + Serial.println("Software quaternions (ENU):"); + Serial.print("q0 = "); Serial.print(q[0]); + Serial.print(" qx = "); Serial.print(q[1]); + Serial.print(" qy = "); Serial.print(q[2]); + Serial.print(" qz = "); Serial.println(q[3]); + Serial.println("Hardware quaternions (NED):"); + Serial.print("Q0 = "); Serial.print(Quat[0]); + Serial.print(" Qx = "); Serial.print(Quat[1]); + Serial.print(" Qy = "); Serial.print(Quat[2]); + Serial.print(" Qz = "); Serial.println(Quat[3]); + } + if(passThru) + { + rawPress = readBMP280Pressure(); + pressure = (float) bmp280_compensate_P(rawPress)/25600.; // Pressure in mbar + rawTemp = readBMP280Temperature(); + temperature = (float) bmp280_compensate_T(rawTemp)/100.; + } + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + + //Software AHRS: + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360 + roll *= 180.0f / PI; + + //Hardware AHRS: + Yaw = atan2(2.0f * (Quat[0] * Quat[1] + Quat[3] * Quat[2]), Quat[3] * Quat[3] + Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2]); + Pitch = -asin(2.0f * (Quat[0] * Quat[2] - Quat[3] * Quat[1])); + Roll = atan2(2.0f * (Quat[3] * Quat[0] + Quat[1] * Quat[2]), Quat[3] * Quat[3] - Quat[0] * Quat[0] - Quat[1] * Quat[1] + Quat[2] * Quat[2]); + Pitch *= 180.0f / PI; + Yaw *= 180.0f / PI; + Yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + if(Yaw < 0) Yaw += 360.0f ; // Ensure yaw stays between 0 and 360 + Roll *= 180.0f / PI; + + // Or define output variable according to the Android system, where heading (0 to 360) is defined by the angle between the y-axis + // and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90) + // In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis + // points toward the right of the device. + + if(SerialDebug) + { + Serial.print("Software yaw, pitch, roll: "); + Serial.print(yaw, 2); + Serial.print(", "); + Serial.print(pitch, 2); + Serial.print(", "); + Serial.println(roll, 2); + Serial.print("Hardware Yaw, Pitch, Roll: "); + Serial.print(Yaw, 2); + Serial.print(", "); + Serial.print(Pitch, 2); + Serial.print(", "); + Serial.println(Roll, 2); + Serial.println("BMP280:"); + Serial.print("Altimeter temperature = "); + Serial.print( temperature, 2); + Serial.println(" C"); // temperature in degrees Celsius + Serial.print("Altimeter temperature = "); + Serial.print(9.*temperature/5. + 32., 2); + Serial.println(" F"); // temperature in degrees Fahrenheit + Serial.print("Altimeter pressure = "); + Serial.print(pressure, 2); + Serial.println(" mbar");// pressure in millibar + altitude = 145366.45f*(1.0f - pow((pressure/1013.25f), 0.190284f)); + Serial.print("Altitude = "); + Serial.print(altitude, 2); + Serial.println(" feet"); + Serial.println(" "); + if(!passThru) + { + if(warm_start_saved) + { + Serial.println("Warm Start configuration saved!"); + } else + { + Serial.println("Send '1' to store Warm Start configuration"); + } + if(accel_cal_saved > 0) + { + Serial.print("Accel Cals Complete:"); Serial.println(accel_cal_saved); + } else + { + Serial.println("Send '2' to store Accel Cal"); + } + } + } + Serial.print(millis()/1000.0, 1);Serial.print(","); + Serial.print(yaw); Serial.print(",");Serial.print(pitch); Serial.print(",");Serial.print(roll); Serial.print(","); + Serial.print(Yaw); Serial.print(",");Serial.print(Pitch); Serial.print(",");Serial.println(Roll); + digitalWrite(myLed, !digitalRead(myLed)); + count = millis(); + sumCount = 0; + sum = 0; + } +} + +//=================================================================================================================== +//====== Sentral parameter management functions +//=================================================================================================================== + +void EM7180_set_gyro_FS (uint16_t gyro_fs) +{ + uint8_t bytes[4], STAT; + bytes[0] = gyro_fs & (0xFF); + bytes[1] = (gyro_fs >> 8) & (0xFF); + bytes[2] = 0x00; + bytes[3] = 0x00; + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused + + // Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); + + // Request parameter transfer procedure + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==0xCB)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) { + uint8_t bytes[4], STAT; + bytes[0] = mag_fs & (0xFF); + bytes[1] = (mag_fs >> 8) & (0xFF); + bytes[2] = acc_fs & (0xFF); + bytes[3] = (acc_fs >> 8) & (0xFF); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB + + // Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); + + //Request parameter transfer procedure + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==0xCA)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + // Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_integer_param (uint8_t param, uint32_t param_val) +{ + uint8_t bytes[4], STAT; + bytes[0] = param_val & (0xFF); + bytes[1] = (param_val >> 8) & (0xFF); + bytes[2] = (param_val >> 16) & (0xFF); + bytes[3] = (param_val >> 24) & (0xFF); + + // Parameter is the decimal value with the MSB set high to indicate a paramter write processs + param = param | 0x80; + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + + // Request parameter transfer procedure + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==param)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + // Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_float_param (uint8_t param, float param_val) { + uint8_t bytes[4], STAT; + float_to_bytes (param_val, &bytes[0]); + + // Parameter is the decimal value with the MSB set high to indicate a paramter write processs + param = param | 0x80; + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + + // Request parameter transfer procedure + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==param)) { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + // Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm +} + +void EM7180_set_WS_params() +{ + uint8_t param = 1; + uint8_t STAT; + + // Parameter is the decimal value with the MSB set high to indicate a paramter write processs + param = param | 0x80; + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, WS_params.Sen_param[0][0]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, WS_params.Sen_param[0][1]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, WS_params.Sen_param[0][2]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, WS_params.Sen_param[0][3]); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + + // Request parameter transfer procedure + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==param)) + { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + for(uint8_t i=1; i<35; i++) + { + param = (i+1) | 0x80; + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, WS_params.Sen_param[i][0]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, WS_params.Sen_param[i][1]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, WS_params.Sen_param[i][2]); + writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, WS_params.Sen_param[i][3]); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==param)) + { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + } + // Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); +} + +void EM7180_get_WS_params() +{ + uint8_t param = 1; + uint8_t STAT; + + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + delay(10); + + // Request parameter transfer procedure + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); + delay(10); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==param)) + { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + + // Parameter is the decimal value with the MSB set low (default) to indicate a paramter read processs + WS_params.Sen_param[0][0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + WS_params.Sen_param[0][1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + WS_params.Sen_param[0][2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + WS_params.Sen_param[0][3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + + for(uint8_t i=1; i<35; i++) + { + param = (i+1); + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); + delay(10); + + // Check the parameter acknowledge register and loop until the result matches parameter request byte + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + while(!(STAT==param)) + { + STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); + } + WS_params.Sen_param[i][0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); + WS_params.Sen_param[i][1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); + WS_params.Sen_param[i][2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); + WS_params.Sen_param[i][3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); + } + // Parameter request = 0 to end parameter transfer process + writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); + + // Re-start algorithm + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); +} + +void EM7180_acc_cal_upload() +{ + int64_t big_cal_num; + union + { + int16_t cal_num; + unsigned char cal_num_byte[2]; + }; + + if(!accel_cal) + { + cal_num_byte[0] = 0; + cal_num_byte[1] = 0; + } else + { + big_cal_num = (4096000000/(global_conf.accZero_max[0] - global_conf.accZero_min[0])) - 1000000; + cal_num = (int16_t)big_cal_num; + } + writeByte(EM7180_ADDRESS, EM7180_GP36, cal_num_byte[0]); + writeByte(EM7180_ADDRESS, EM7180_GP37, cal_num_byte[1]); + + if(!accel_cal) + { + cal_num_byte[0] = 0; + cal_num_byte[1] = 0; + } else + { + big_cal_num = (4096000000/(global_conf.accZero_max[1] - global_conf.accZero_min[1])) - 1000000; + cal_num = (int16_t)big_cal_num; + } + writeByte(EM7180_ADDRESS, EM7180_GP38, cal_num_byte[0]); + writeByte(EM7180_ADDRESS, EM7180_GP39, cal_num_byte[1]); + + if(!accel_cal) + { + cal_num_byte[0] = 0; + cal_num_byte[1] = 0; + } else + { + big_cal_num = (4096000000/(global_conf.accZero_max[2] - global_conf.accZero_min[2])) - 1000000; + cal_num = (int16_t)big_cal_num; + } + writeByte(EM7180_ADDRESS, EM7180_GP40, cal_num_byte[0]); + writeByte(EM7180_ADDRESS, EM7180_GP50, cal_num_byte[1]); + + if(!accel_cal) + { + cal_num_byte[0] = 0; + cal_num_byte[1] = 0; + } else + { + big_cal_num = (((2048 - global_conf.accZero_max[0]) + (-2048 - global_conf.accZero_min[0]))*100000)/4096; + cal_num = (int16_t)big_cal_num; + } + writeByte(EM7180_ADDRESS, EM7180_GP51, cal_num_byte[0]); + writeByte(EM7180_ADDRESS, EM7180_GP52, cal_num_byte[1]); + + if(!accel_cal) + { + cal_num_byte[0] = 0; + cal_num_byte[1] = 0; + } else + { + big_cal_num = (((2048 - global_conf.accZero_max[1]) + (-2048 - global_conf.accZero_min[1]))*100000)/4096; + cal_num = (int16_t)big_cal_num; + } + writeByte(EM7180_ADDRESS, EM7180_GP53, cal_num_byte[0]); + writeByte(EM7180_ADDRESS, EM7180_GP54, cal_num_byte[1]); + + if(!accel_cal) + { + cal_num_byte[0] = 0; + cal_num_byte[1] = 0; + } else + { + big_cal_num = (((2048 - global_conf.accZero_max[2]) + (-2048 - global_conf.accZero_min[2]))*100000)/4096; + cal_num = -(int16_t)big_cal_num; + } + writeByte(EM7180_ADDRESS, EM7180_GP55, cal_num_byte[0]); + writeByte(EM7180_ADDRESS, EM7180_GP56, cal_num_byte[1]); +} + +void WS_PassThroughMode() +{ + uint8_t stat = 0; + + // First put SENtral in standby mode + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x01); + delay(5); + + // Place SENtral in pass-through mode + writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); + delay(5); + stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); + while(!(stat & 0x01)) + { + stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); + delay(5); + } +} + +void WS_Resume() +{ + uint8_t stat = 0; + + // Cancel pass-through mode + writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); + delay(5); + stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); + while((stat & 0x01)) + { + stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); + delay(5); + } + + // Re-start algorithm + writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); + delay(5); + stat = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); + while((stat & 0x01)) + { + stat = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); + delay(5); + } +} + +void readSenParams() +{ + uint8_t data[140]; + uint8_t paramnum; + M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x80, 12, &data[128]); // Page 255 + delay(100); + M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x00, 128, &data[0]); // Page 254 + for (paramnum = 0; paramnum < 35; paramnum++) // 35 parameters + { + for (uint8_t i= 0; i < 4; i++) + { + WS_params.Sen_param[paramnum][i] = data[(paramnum*4 + i)]; + } + } +} + +void writeSenParams() +{ + uint8_t data[140]; + uint8_t paramnum; + for (paramnum = 0; paramnum < 35; paramnum++) // 35 parameters + { + for (uint8_t i= 0; i < 4; i++) + { + data[(paramnum*4 + i)] = WS_params.Sen_param[paramnum][i]; + } + } + M24512DFMwriteBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x80, 12, &data[128]); // Page 255 + delay(100); + M24512DFMwriteBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x00, 128, &data[0]); // Page 254 +} + +void Accel_cal_check() +{ + static int64_t a[3] = {0, 0, 0}, b[3] = {0, 0, 0}; + + if (calibratingA > 0) + { + for (uint8_t axis = 0; axis < 3; axis++) + { + if (accelCount[axis] > 1024) + { + // Sum up 512 readings + a[axis] += accelCount[axis]; + } + if (accelCount[axis] < -1024) + { + b[axis] += accelCount[axis]; + } + // Clear global variables for next reading + accelCount[axis] = 0; + } + + // Calculate averages, and store values in EEPROM at end of calibration + if (calibratingA == 1) + { + for (uint8_t axis = 0; axis < 3; axis++) + { + if (a[axis]>>9 > 1024) + { + global_conf.accZero_max[axis] = a[axis]>>9; + } + if (b[axis]>>9 < -1024) + { + global_conf.accZero_min[axis] = b[axis]>>9; + } + a[axis] = 0; + b[axis] = 0; + } + + //Write accZero to EEPROM + delay(100); + + // Put the Sentral in pass-thru mode + WS_PassThroughMode(); + + // Store accelerometer calibration data to the M24512DFM I2C EEPROM + writeAccCal(); + + + // Take Sentral out of pass-thru mode and re-start algorithm + WS_Resume(); + accel_cal_saved++; + if(accel_cal_saved > 6) accel_cal_saved = 0; + } + calibratingA--; + } +} + +void readAccelCal() +{ + uint8_t data[12]; + uint8_t axis; + + M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x8c, 12, data); // Page 255 + for (axis = 0; axis < 3; axis++) + { + global_conf.accZero_max[axis] = ((int16_t)(data[(2*axis + 1)]<<8) | data[2*axis]); + global_conf.accZero_min[axis] = ((int16_t)(data[(2*axis + 7)]<<8) | data[(2*axis + 6)]); + } +} + +void writeAccCal() +{ + uint8_t data[12]; + uint8_t axis; + for (axis = 0; axis < 3; axis++) + { + data[2*axis] = (global_conf.accZero_max[axis] & 0xff); + data[(2*axis + 1)] = (global_conf.accZero_max[axis] >> 8); + data[(2*axis + 6)] = (global_conf.accZero_min[axis] & 0xff); + data[(2*axis + 7)] = (global_conf.accZero_min[axis] >> 8); + } + M24512DFMwriteBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x8c, 12, data); // Page 255 +} + +//=================================================================================================================== +//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data +//=================================================================================================================== + +float uint32_reg_to_float (uint8_t *buf) +{ + union { + uint32_t ui32; + float f; + } u; + + u.ui32 = (((uint32_t)buf[0]) + + (((uint32_t)buf[1]) << 8) + + (((uint32_t)buf[2]) << 16) + + (((uint32_t)buf[3]) << 24)); + return u.f; +} + +void float_to_bytes (float param_val, uint8_t *buf) { + union { + float f; + uint8_t comp[sizeof(float)]; + } u; + u.f = param_val; + for (uint8_t i=0; i < sizeof(float); i++) { + buf[i] = u.comp[i]; + } + //Convert to LITTLE ENDIAN + for (uint8_t i=0; i < sizeof(float); i++) { + buf[i] = buf[(sizeof(float)-1) - i]; + } +} + +void readSENtralQuatData(float * destination) +{ + uint8_t rawData[16]; // x/y/z quaternion register data stored here + readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array + destination[0] = uint32_reg_to_float (&rawData[0]); + destination[1] = uint32_reg_to_float (&rawData[4]); + destination[2] = uint32_reg_to_float (&rawData[8]); + destination[3] = uint32_reg_to_float (&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! + +} + +void readSENtralAccelData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); +} + +void readSENtralGyroData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); +} + +void readSENtralMagData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value + destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); + destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); +} + +void getMres() { + switch (Mscale) + { + // Possible magnetometer scales (and their register bit settings) are: + // 14 bit resolution (0) and 16 bit resolution (1) + case MFS_14BITS: + mRes = 10.*4912./8190.; // Proper scale to return milliGauss + break; + case MFS_16BITS: + mRes = 10.*4912./32760.0; // Proper scale to return milliGauss + break; + } +} + +void getGres() { + switch (Gscale) + { + // Possible gyro scales (and their register bit settings) are: + // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case GFS_250DPS: + gRes = 250.0/32768.0; + break; + case GFS_500DPS: + gRes = 500.0/32768.0; + break; + case GFS_1000DPS: + gRes = 1000.0/32768.0; + break; + case GFS_2000DPS: + gRes = 2000.0/32768.0; + break; + } +} + +void getAres() { + switch (Ascale) + { + // Possible accelerometer scales (and their register bit settings) are: + // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). + // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: + case AFS_2G: + aRes = 2.0/32768.0; + break; + case AFS_4G: + aRes = 4.0/32768.0; + break; + case AFS_8G: + aRes = 8.0/32768.0; + break; + case AFS_16G: + aRes = 16.0/32768.0; + break; + } +} + + +void readAccelData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z accel register data stored here + readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array + destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; + destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; +} + + +void readGyroData(int16_t * destination) +{ + uint8_t rawData[6]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array + destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ; + destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; +} + +void readMagData(int16_t * destination) +{ + uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition + if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set + readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array + uint8_t c = rawData[6]; // End data read by reading ST2 register + if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data + destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value + destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian + destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; + } + } +} + +int16_t readTempData() +{ + uint8_t rawData[2]; // x/y/z gyro register data stored here + readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array + return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value +} + +void initAK8963(float * destination) +{ + // First extract the factory calibration for each magnetometer axis + uint8_t rawData[3]; // x/y/z gyro calibration data stored here + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer + delay(20); + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode + delay(20); + readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values + destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc. + destination[1] = (float)(rawData[1] - 128)/256. + 1.; + destination[2] = (float)(rawData[2] - 128)/256. + 1.; + writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer + delay(20); + // Configure the magnetometer for continuous read and highest resolution + // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, + // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates + writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR + delay(20); +} + + +void initMPU9250() +{ + // wake up device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors + delay(100); // Wait for all registers to reset + + // get stable time source + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else + delay(200); + + // Configure Gyro and Thermometer + // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; + // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot + // be higher than 1 / 0.0059 = 170 Hz + // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both + // With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz + writeByte(MPU9250_ADDRESS, CONFIG, 0x03); + + // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate + // determined inset in CONFIG above + +// Set gyroscope full scale range + // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 + uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value + // c = c & ~0xE0; // Clear self-test bits [7:5] + c = c & ~0x02; // Clear Fchoice bits [1:0] + c = c & ~0x18; // Clear AFS bits [4:3] + c = c | Gscale << 3; // Set full scale range for the gyro + // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register + + // Set accelerometer full-scale range configuration + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value + // c = c & ~0xE0; // Clear self-test bits [7:5] + c = c & ~0x18; // Clear AFS bits [4:3] + c = c | Ascale << 3; // Set full scale range for the accelerometer + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value + + // Set accelerometer sample rate configuration + // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for + // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz + c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value + c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) + c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value + + // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, + // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting + + // Configure Interrupts and Bypass Enable + // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared, + // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips + // can join the I2C bus and all can be controlled by the Arduino as master + writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt + delay(100); +} + +// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average +// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. +void accelgyrocalMPU9250(float * dest1, float * dest2) +{ + uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data + uint16_t ii, packet_count, fifo_count; + int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; + + // reset device + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device + delay(100); + + // get stable time source; Auto select clock source to be PLL gyroscope reference if ready + // else use the internal oscillator, bits 2:0 = 001 + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); + writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); + delay(200); + +// Configure device for bias calculation + writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO + writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source + writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP + delay(15); + +// Configure MPU6050 gyro and accelerometer for bias calculation + writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity + writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity + + uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec + uint16_t accelsensitivity = 16384; // = 16384 LSB/g + +// Configure FIFO to capture accelerometer and gyro data for bias calculation + writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150) + delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes + +// At end of sample accumulation, turn off FIFO sensor read + writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO + readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count + fifo_count = ((uint16_t)data[0] << 8) | data[1]; + packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging + + for (ii = 0; ii < packet_count; ii++) { + int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; + readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging + accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO + accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; + accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; + gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; + gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; + gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; + + accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases + accel_bias[1] += (int32_t) accel_temp[1]; + accel_bias[2] += (int32_t) accel_temp[2]; + gyro_bias[0] += (int32_t) gyro_temp[0]; + gyro_bias[1] += (int32_t) gyro_temp[1]; + gyro_bias[2] += (int32_t) gyro_temp[2]; + +} + accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases + accel_bias[1] /= (int32_t) packet_count; + accel_bias[2] /= (int32_t) packet_count; + gyro_bias[0] /= (int32_t) packet_count; + gyro_bias[1] /= (int32_t) packet_count; + gyro_bias[2] /= (int32_t) packet_count; + + if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation + else {accel_bias[2] += (int32_t) accelsensitivity;} + +// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup + data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format + data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases + data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; + data[3] = (-gyro_bias[1]/4) & 0xFF; + data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; + data[5] = (-gyro_bias[2]/4) & 0xFF; + +// Push gyro biases to hardware registers + writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); + writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); + writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); + writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); + writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); + +// Output scaled gyro biases for display in the main program + dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; + dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; + dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; + +// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain +// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold +// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature +// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that +// the accelerometer biases calculated above must be divided by 8. + + int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases + readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values + accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]); + readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); + accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]); + readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); + accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]); + + uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers + uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis + + for(ii = 0; ii < 3; ii++) { + if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit + } + + // Construct total accelerometer bias, including calculated average accelerometer bias from above + accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) + accel_bias_reg[1] -= (accel_bias[1]/8); + accel_bias_reg[2] -= (accel_bias[2]/8); + + data[0] = (accel_bias_reg[0] >> 8) & 0xFE; + data[1] = (accel_bias_reg[0]) & 0xFE; + data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[2] = (accel_bias_reg[1] >> 8) & 0xFE; + data[3] = (accel_bias_reg[1]) & 0xFE; + data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers + data[4] = (accel_bias_reg[2] >> 8) & 0xFE; + data[5] = (accel_bias_reg[2]) & 0xFE; + data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers + +// Apparently this is not working for the acceleration biases in the MPU-9250 +// Are we handling the temperature correction bit properly? +// Push accelerometer biases to hardware registers +/* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); + writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); + writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); + writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); + writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); + writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); +*/ +// Output scaled accelerometer biases for display in the main program + dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; + dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; + dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; +} + +void magcalMPU9250(float * dest1, float * dest2) +{ + uint16_t ii = 0, sample_count = 0; + int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0}; + int16_t mag_max[3] = {0xFF, 0xFF, 0xFF}, mag_min[3] = {0x7F, 0x7F, 0x7F}, mag_temp[3] = {0, 0, 0}; + + Serial.println("Mag Calibration: Wave device in a figure eight until done!"); + delay(4000); + + if(Mmode == 0x02) sample_count = 128; + if(Mmode == 0x06) sample_count = 1500; + for(ii = 0; ii < sample_count; ii++) { + readMagData(mag_temp); // Read the mag data + for (int jj = 0; jj < 3; jj++) { + if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; + if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; + } + if(Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms + if(Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms + } + +// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]); +// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]); +// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); + + // Get hard iron correction + mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts + mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts + mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts + + dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0]; // save mag biases in G for main program + dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1]; + dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2]; + + // Get soft iron correction estimate + mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts + mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts + mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts + + float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; + avg_rad /= 3.0; + + dest2[0] = avg_rad/((float)mag_scale[0]); + dest2[1] = avg_rad/((float)mag_scale[1]); + dest2[2] = avg_rad/((float)mag_scale[2]); + + Serial.println("Mag Calibration done!"); +} + +// Accelerometer and gyroscope self test; check calibration wrt factory settings +void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass +{ + uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; + uint8_t selfTest[6]; + int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; + float factoryTrim[6]; + uint8_t FS = 0; + + writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz + writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz + writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<> 4); +} + +int32_t readBMP280Pressure() +{ + uint8_t rawData[3]; // 20-bit pressure register data stored here + readBytes(BMP280_ADDRESS, BMP280_PRESS_MSB, 3, &rawData[0]); + return (int32_t) (((int32_t) rawData[0] << 16 | (int32_t) rawData[1] << 8 | rawData[2]) >> 4); +} + +void BMP280Init() +{ + // Configure the BMP280 + // Set T and P oversampling rates and sensor mode + writeByte(BMP280_ADDRESS, BMP280_CTRL_MEAS, Tosr << 5 | Posr << 2 | Mode); + // Set standby time interval in normal mode and bandwidth + writeByte(BMP280_ADDRESS, BMP280_CONFIG, SBy << 5 | IIRFilter << 2); + // Read and store calibration data + uint8_t calib[24]; + readBytes(BMP280_ADDRESS, BMP280_CALIB00, 24, &calib[0]); + dig_T1 = (uint16_t)(((uint16_t) calib[1] << 8) | calib[0]); + dig_T2 = ( int16_t)((( int16_t) calib[3] << 8) | calib[2]); + dig_T3 = ( int16_t)((( int16_t) calib[5] << 8) | calib[4]); + dig_P1 = (uint16_t)(((uint16_t) calib[7] << 8) | calib[6]); + dig_P2 = ( int16_t)((( int16_t) calib[9] << 8) | calib[8]); + dig_P3 = ( int16_t)((( int16_t) calib[11] << 8) | calib[10]); + dig_P4 = ( int16_t)((( int16_t) calib[13] << 8) | calib[12]); + dig_P5 = ( int16_t)((( int16_t) calib[15] << 8) | calib[14]); + dig_P6 = ( int16_t)((( int16_t) calib[17] << 8) | calib[16]); + dig_P7 = ( int16_t)((( int16_t) calib[19] << 8) | calib[18]); + dig_P8 = ( int16_t)((( int16_t) calib[21] << 8) | calib[20]); + dig_P9 = ( int16_t)((( int16_t) calib[23] << 8) | calib[22]); +} + +// Returns temperature in DegC, resolution is 0.01 DegC. Output value of +// “5123” equals 51.23 DegC. +int32_t bmp280_compensate_T(int32_t adc_T) +{ + int32_t var1, var2, T; + var1 = ((((adc_T >> 3) - ((int32_t)dig_T1 << 1))) * ((int32_t)dig_T2)) >> 11; + var2 = (((((adc_T >> 4) - ((int32_t)dig_T1)) * ((adc_T >> 4) - ((int32_t)dig_T1))) >> 12) * ((int32_t)dig_T3)) >> 14; + t_fine = var1 + var2; + T = (t_fine * 5 + 128) >> 8; + return T; +} + +// Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8 +//fractional bits). +//Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa +uint32_t bmp280_compensate_P(int32_t adc_P) +{ + long long var1, var2, p; + var1 = ((long long)t_fine) - 128000; + var2 = var1 * var1 * (long long)dig_P6; + var2 = var2 + ((var1*(long long)dig_P5)<<17); + var2 = var2 + (((long long)dig_P4)<<35); + var1 = ((var1 * var1 * (long long)dig_P3)>>8) + ((var1 * (long long)dig_P2)<<12); + var1 = (((((long long)1)<<47)+var1))*((long long)dig_P1)>>33; + if(var1 == 0) + { + return 0; + // avoid exception caused by division by zero + } + p = 1048576 - adc_P; + p = (((p<<31) - var2)*3125)/var1; + var1 = (((long long)dig_P9) * (p>>13) * (p>>13)) >> 25; + var2 = (((long long)dig_P8) * p)>> 19; + p = ((p + var1 + var2) >> 8) + (((long long)dig_P7)<<4); + return (uint32_t)p; +} + +//=================================================================================================================== +//====== I2C Communication Support Functions +//=================================================================================================================== + +// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor +// since the address is defined by two bytes + +void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data) +{ + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer +} + +void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) +{ + if(count > 128) + { + count = 128; + Serial.print("Page count cannot be more than 128 bytes!"); + } + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + for(uint8_t i=0; i < count; i++) + { + Wire.write(dest[i]); // Put data in Tx buffer + } + Wire.endTransmission(); // Send the Tx buffer +} + +uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2) +{ + uint8_t data; // `data` will store the register data + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(device_address, (size_t)1); // Read one byte from slave register address + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register +} + +void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) +{ + Wire.beginTransmission(device_address); // Initialize the Tx buffer + Wire.write(data_address1); // Put slave register address in Tx buffer + Wire.write(data_address2); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; + Wire.requestFrom(device_address, (size_t)count); // Read bytes from slave register address + while (Wire.available()) + { + dest[i++] = Wire.read(); + } // Put read results in the Rx buffer +} + +// simple function to scan for I2C devices on the bus +void I2Cscan() +{ + // scan for i2c devices + byte error, address; + int nDevices; + + Serial.println("Scanning..."); + + nDevices = 0; + for(address = 1; address < 127; address++ ) + { + // The i2c_scanner uses the return value of + // the Write.endTransmisstion to see if + // a device did acknowledge to the address. + Wire.beginTransmission(address); + error = Wire.endTransmission(); + + if (error == 0) + { + Serial.print("I2C device found at address 0x"); + if (address<16) + Serial.print("0"); + Serial.print(address,HEX); + Serial.println(" !"); + nDevices++; + } + else if (error==4) + { + Serial.print("Unknow error at address 0x"); + if (address<16) + Serial.print("0"); + Serial.println(address,HEX); + } + } + if (nDevices == 0) + Serial.println("No I2C devices found\n"); + else + Serial.println("done\n"); +} + +// I2C read/write functions for the MPU9250 and AK8963 sensors + +void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.write(data); // Put data in Tx buffer + Wire.endTransmission(); // Send the Tx buffer +} + +uint8_t readByte(uint8_t address, uint8_t subAddress) +{ + uint8_t data; // `data` will store the register data + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive + Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address + data = Wire.read(); // Fill Rx buffer with result + return data; // Return data read from slave register +} + +void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) +{ + Wire.beginTransmission(address); // Initialize the Tx buffer + Wire.write(subAddress); // Put slave register address in Tx buffer + Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive + uint8_t i = 0; + Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address + while (Wire.available()) + { + dest[i++] = Wire.read(); + } // Put read results in the Rx buffer +}