* EM7180_BMI160_AK8963C_t3 Basic Example Code by: Kris Winer date: April 20, 2016 license: Beerware - Use this code however you'd like. If you find it useful you can buy me a beer some time. The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors, in this case the BMI160 and AK8963C, and does sensor fusion with quaternions as its output. The SENtral loads firmware from the on-board M24512DFC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus, and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and heading/pitch/roll, if selected. This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor, getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and Mahony filter algorithms to compare with the hardware sensor fusion results. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master, the BMI160+AK8963C 9-axis motion sensor (accel/gyro/mag) as slave, and an M24512DFC 512kbit (64 kByte) EEPROM as slave all connected via I2C. This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h. SDA and SCL has external pull-up resistors (to 3.3V). Hardware setup: EM7180 Mini Add-On ------- Teensy 3.1 VDD ---------------------- 3.3V SDA ----------------------- 17 SCL ----------------------- 16 GND ---------------------- GND Note: All the sensors on this board are I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library. Because the sensors are not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. */ #include #include // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in // above document; the MPU6500 and MPU9250 are virtually identical but the latter has a different register map // //Magnetometer Registers #define AK8963_ADDRESS 0x0C #define WHO_AM_I_AK8963 0x00 // should return 0x48 #define INFO 0x01 #define AK8963_ST1 0x02 // data ready status bit 0 #define AK8963_XOUT_L 0x03 // data #define AK8963_XOUT_H 0x04 #define AK8963_YOUT_L 0x05 #define AK8963_YOUT_H 0x06 #define AK8963_ZOUT_L 0x07 #define AK8963_ZOUT_H 0x08 #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 #define AK8963_ASTC 0x0C // Self test control #define AK8963_I2CDIS 0x0F // I2C disable #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value // Bosch BMI160 accel/gyro // see https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI160-DS000-07.pdf // #define BMI160_CHIP_ID 0x00 #define BMI160_ERR_REG 0x02 #define BMI160_PMU_STATUS 0x03 #define BMI160_GYRO_DATA 0x0C // 0x04 - 0x17 0x0C is start of gyro data #define BMI160_ACCEL_DATA 0x12 // 0x04 - 0x17 0x12 is start of accel data #define BMI160_SENSORTIME 0x18 // 0x18 - 0x1A #define BMI160_STATUS 0x1B #define BMI160_INT_STATUS 0x1C // 0x1C - 0x1F #define BMI160_TEMPERATURE 0x20 // 0x20 - 0x21 #define BMI160_FIFO_LENGTH 0x22 // 0x22 - 0x23 #define BMI160_FIFO_DATA 0x24 // 1024 bytes #define BMI160_ACC_CONF 0x40 #define BMI160_ACC_RANGE 0x41 #define BMI160_GYR_CONF 0x42 #define BMI160_GYR_RANGE 0x43 #define BMI160_MAG_CONF 0x44 #define BMI160_FIFO_DOWNS 0x45 #define BMI160_FIFO_CONFIG 0x46 // 0x46 - 0x47 #define BMI160_MAG_IF 0x4B // 0x4B - 0x4F #define BMI160_INT_EN 0x50 // 0x50 - 0x52 #define BMI160_INT_OUT_CTRL 0x53 #define BMI160_INT_LATCH 0x54 #define BMI160_INT_MAP 0x55 // 0x55 - 0x57 #define BMI160_INT_DATA 0x58 // 0x58 - 0x59 #define BMI160_INT_LOWHIGH 0x5A // 0x5A - 0x5E #define BMI160_INT_MOTION 0x5F // 0x5F - 0x62 #define BMI160_INT_TAP 0x63 // 0x63 - 0x64 #define BMI160_INT_ORIENT 0x65 // 0x65 - 0x66 #define BMI160_INT_FLAT 0x67 // 0x67 - 0x68 #define BMI160_FOC_CONF 0x69 #define BMI160_CONF 0x6A #define BMI160_IF_CONF 0x6B #define BMI160_PMU_TRIGGER 0x6C #define BMI160_SELF_TEST 0x6D #define BMI160_NV_CONF 0x70 #define BMI160_OFFSET 0x71 // 0x71 - 0x77 #define BMI160_OFFSET_CONF 0x77 #define BMI160_STEP_CNT 0x78 // 0x78 - 0x79 #define BMI160_STEP_CONF 0x7A // 0x7A - 0x7B #define BMI160_CMD 0x7E // EM7180 SENtral register map // see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf // #define EM7180_QX 0x00 // this is a 32-bit normalized floating point number read from registers 0x00-03 #define EM7180_QY 0x04 // this is a 32-bit normalized floating point number read from registers 0x04-07 #define EM7180_QZ 0x08 // this is a 32-bit normalized floating point number read from registers 0x08-0B #define EM7180_QW 0x0C // this is a 32-bit normalized floating point number read from registers 0x0C-0F #define EM7180_QTIME 0x10 // this is a 16-bit unsigned integer read from registers 0x10-11 #define EM7180_MX 0x12 // int16_t from registers 0x12-13 #define EM7180_MY 0x14 // int16_t from registers 0x14-15 #define EM7180_MZ 0x16 // int16_t from registers 0x16-17 #define EM7180_MTIME 0x18 // uint16_t from registers 0x18-19 #define EM7180_AX 0x1A // int16_t from registers 0x1A-1B #define EM7180_AY 0x1C // int16_t from registers 0x1C-1D #define EM7180_AZ 0x1E // int16_t from registers 0x1E-1F #define EM7180_ATIME 0x20 // uint16_t from registers 0x20-21 #define EM7180_GX 0x22 // int16_t from registers 0x22-23 #define EM7180_GY 0x24 // int16_t from registers 0x24-25 #define EM7180_GZ 0x26 // int16_t from registers 0x26-27 #define EM7180_GTIME 0x28 // uint16_t from registers 0x28-29 #define EM7180_QRateDivisor 0x32 // uint8_t #define EM7180_EnableEvents 0x33 #define EM7180_HostControl 0x34 #define EM7180_EventStatus 0x35 #define EM7180_SensorStatus 0x36 #define EM7180_SentralStatus 0x37 #define EM7180_AlgorithmStatus 0x38 #define EM7180_FeatureFlags 0x39 #define EM7180_ParamAcknowledge 0x3A #define EM7180_SavedParamByte0 0x3B #define EM7180_SavedParamByte1 0x3C #define EM7180_SavedParamByte2 0x3D #define EM7180_SavedParamByte3 0x3E #define EM7180_ActualMagRate 0x45 #define EM7180_ActualAccelRate 0x46 #define EM7180_ActualGyroRate 0x47 #define EM7180_ErrorRegister 0x50 #define EM7180_AlgorithmControl 0x54 #define EM7180_MagRate 0x55 #define EM7180_AccelRate 0x56 #define EM7180_GyroRate 0x57 #define EM7180_LoadParamByte0 0x60 #define EM7180_LoadParamByte1 0x61 #define EM7180_LoadParamByte2 0x62 #define EM7180_LoadParamByte3 0x63 #define EM7180_ParamRequest 0x64 #define EM7180_ROMVersion1 0x70 #define EM7180_ROMVersion2 0x71 #define EM7180_RAMVersion1 0x72 #define EM7180_RAMVersion2 0x73 #define EM7180_ProductID 0x90 #define EM7180_RevisionID 0x91 #define EM7180_RunStatus 0x92 #define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB) #define EM7180_UploadData 0x96 #define EM7180_CRCHost 0x97 // uint32_t from registers 0x97-9A #define EM7180_ResetRequest 0x9B #define EM7180_PassThruStatus 0x9E #define EM7180_PassThruControl 0xA0 // Using the Teensy Mini Add-On board, BMX055 SDO1 = SDO2 = CSB3 = GND as designed // Seven-bit BMX055 device addresses are ACC = 0x18, GYRO = 0x68, MAG = 0x10 #define EM7180_ADDRESS 0x28 // Address of the EM7180 SENtral sensor hub #define M24512DFM_DATA_ADDRESS 0x50 // Address of the 500 page M24512DFM EEPROM data buffer, 1024 bits (128 8-bit bytes) per page #define M24512DFM_IDPAGE_ADDRESS 0x58 // Address of the single M24512DFM lockable EEPROM ID page #define BMI160_ADDRESS 0x68 // Device address when ADO = 0 #define AK8963_ADDRESS 0x0C // Address of magnetometer #define SerialDebug true // set to true to get Serial output for debugging // Set initial input parameters #define AFS_2G 0x03 #define AFS_4G 0x05 #define AFS_8G 0x08 #define AFS_16G 0x0C enum AODR { Arate0 = 0, Arate1Hz, // really 25/32 Arate2Hz, // really 25/16 Arate3Hz, // really 25/8 Arate6_25Hz, Arate12_5Hz, Arate25Hz, Arate50Hz, Arate100Hz, Arate200Hz, Arate400Hz, Arate800Hz, Arate1600Hz }; enum ABW { ABW_4X = 0, // 4 times oversampling ~ 10% of ODR ABW_2X, // 2 times oversampling ~ 20% of ODR ABW_1X // 1 times oversampling ~ 40% of ODR }; enum Gscale { GFS_2000DPS = 0, GFS_1000DPS, GFS_500DPS, GFS_250DPS, GFS_125DPS }; enum GODR { Grate25Hz = 6, Grate50Hz, Grate100Hz, Grate200Hz, Grate400Hz, Grate800Hz, Grate1600Hz, Grate3200Hz }; enum GBW { GBW_4X = 0, // 4 times oversampling ~ 10% of ODR GBW_2X, // 2 times oversampling ~ 20% of ODR GBW_1X // 1 times oversampling ~ 40% of ODR }; enum Mscale { MFS_14BITS = 0, // 0.6 mG per LSB MFS_16BITS // 0.15 mG per LSB }; // // Specify sensor full scale uint8_t Gscale = GFS_250DPS, GODR = Grate200Hz, GBW = GBW_2X; uint8_t Ascale = AFS_2G, AODR = Arate200Hz, ABW = ABW_2X; uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit magnetometer resolution uint8_t Mmode = 0x06; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read float aRes, gRes, mRes; // scale resolutions per LSB for the sensors // Pin definitions int myLed = 13; // LED on the Teensy 3.1 // BMI160 variables int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output float Quat[4] = {0, 0, 0, 0}; // quaternion data register float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag bias float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag int16_t tempCount; // temperature raw count output float temperature; // Stores the BMX055 internal chip temperature in degrees Celsius float SelfTest[6]; // holds results of gyro and accelerometer self test // global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System) float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s) float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) // There is a tradeoff in the beta parameter between accuracy and response speed. // In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy. // However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion. // Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car! // By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec // I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense; // the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy. // In any case, this is the free parameter in the Madgwick filtering and fusion scheme. float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral #define Ki 0.0f uint32_t delt_t = 0, count = 0, sumCount = 0; // used to control display output rate float pitch, yaw, roll, Yaw, Pitch, Roll; float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval uint32_t Now = 0; // used to calculate integration interval uint8_t param[4]; // used for param transfer uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method bool passThru = true; void setup() { // Setup for Master mode, pins 18/19, external pullups, 400kHz for Teensy 3.1 Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400); delay(5000); Serial.begin(38400); I2Cscan(); // should detect SENtral at 0x28 // Read SENtral device information uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1); uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2); Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609"); uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1); uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2); Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2); uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID); Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80"); uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID); Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02"); delay(1000); // give some time to read the screen // Check SENtral status, make sure EEPROM upload of firmware was accomplished byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); int count = 0; while(!STAT) { writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); delay(500); count++; STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); if(count > 3) break; } if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!"); delay(1000); // give some time to read the screen // Set up the SENtral as sensor bus in normal operating mode if(!passThru) { // Enter EM7180 initialized state writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off // Set accel/gyro/mage desired ODR rates writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 100 Hz writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x1E); // 30 Hz writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x0A); // 100/10 Hz writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x14); // 200/10 Hz // Configure operating mode writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data // Enable interrupt to host upon certain events // choose interrupts when quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); // Enable EM7180 run mode writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode delay(100); // EM7180 parameter adjustments Serial.println("Beginning Parameter Adjustments"); // Read sensor default FS values from parameter space writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4A)) { param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4B)) { param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm //Disable stillness mode EM7180_set_integer_param (0x49, 0x00); //Write desired sensor full scale ranges to the EM7180 EM7180_set_mag_acc_FS (0x3E8, 0x08); // 1000 uT, 8 g EM7180_set_gyro_FS (0x7D0); // 2000 dps // Read sensor new FS values from parameter space writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4A)) { param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4B)) { param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm // Read EM7180 status uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus); if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode"); uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); if(algoStatus & 0x01) Serial.println(" EM7180 standby status"); if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow"); if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode"); if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed"); if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected"); if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data"); uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus); if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!"); uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset"); if(eventStatus & 0x02) Serial.println(" EM7180 Error"); if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result"); if(eventStatus & 0x08) Serial.println(" EM7180 new mag result"); if(eventStatus & 0x10) Serial.println(" EM7180 new accel result"); if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); delay(1000); // give some time to read the screen // Check sensor status uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus); Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus); if(sensorStatus & 0x01) Serial.println("Magnetometer not acknowledging!"); if(sensorStatus & 0x02) Serial.println("Accelerometer not acknowledging!"); if(sensorStatus & 0x04) Serial.println("Gyro not acknowledging!"); if(sensorStatus & 0x10) Serial.println("Magnetometer ID not recognized!"); if(sensorStatus & 0x20) Serial.println("Accelerometer ID not recognized!"); if(sensorStatus & 0x40) Serial.println("Gyro ID not recognized!"); Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz"); Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz"); Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz"); delay(1000); // give some time to read the screen } // If pass through mode desired, set it up here if(passThru) { // Put EM7180 SENtral into pass-through mode SENtralPassThroughMode(); delay(1000); I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages) // Read first page of EEPROM uint8_t data[128]; M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data); Serial.println("EEPROM Signature Byte"); Serial.print(data[0], HEX); Serial.println(" Should be 0x2A"); Serial.print(data[1], HEX); Serial.println(" Should be 0x65"); for (int i = 0; i < 128; i++) { Serial.print(data[i], HEX); Serial.print(" "); } // Set up the interrupt pin, its set as active high, push-pull pinMode(myLed, OUTPUT); digitalWrite(myLed, HIGH); // Read the WHO_AM_I register, this is a good test of communication Serial.println("BMI160 6-axis motion sensor..."); byte c = readByte(BMI160_ADDRESS, BMI160_CHIP_ID); Serial.print("BMI160 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0xD1, HEX); delay(1000); // Read the WHO_AM_I register of the magnetometer, this is a good test of communication byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for AK8963 Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX); delay(1000); if ((c == 0xD1) && (d == 0x48) ) // WHO_AM_I should always be ACC/GYRO = 0xD1, MAG = 0x48 { Serial.println("BMI160 and AK8963C are online..."); delay(1000); // get sensor resolutions, only need to do this once getAres(); getGres(); getMres(); Serial.println(" Calibrate gyro and accel"); accelgyrofastcalBMI160(accelBias, gyroBias); // Calibrate gyro and accelerometers, load biases in bias registers Serial.println("accel biases (mg)"); Serial.println(3.9*accelBias[0]); Serial.println(3.9*accelBias[1]); Serial.println(3.9*accelBias[2]); Serial.println("gyro biases (dps)"); Serial.println(0.061*gyroBias[0]); Serial.println(0.061*gyroBias[1]); Serial.println(0.061*gyroBias[2]); delay(1000); initBMI160(); Serial.println("BMI160 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature // Check power status of BMI160 uint8_t pwr_status = readByte(BMI160_ADDRESS, BMI160_PMU_STATUS); uint8_t acc_pwr = (pwr_status & 0x30) >> 4; if (acc_pwr == 0x00) Serial.println("Accel Suspend Mode"); if (acc_pwr == 0x01) Serial.println("Accel Normal Mode"); if (acc_pwr == 0x02) Serial.println("Accel Low Power Mode"); uint8_t gyr_pwr = (pwr_status & 0x0C) >> 2; if (gyr_pwr == 0x00) Serial.println("Gyro Suspend Mode"); if (gyr_pwr == 0x01) Serial.println("Gyro Normal Mode"); if (gyr_pwr == 0x03) Serial.println("Gyro Fast Start Up Mode"); delay(1000); BMI160SelfTest(SelfTest); // Start by performing self test and reporting values Serial.println("result of self test should be at least 2 g!"); Serial.print("x-axis self test: acceleration delta is : "); Serial.print(SelfTest[0],1); Serial.println(" g"); Serial.print("y-axis self test: acceleration delta is : "); Serial.print(SelfTest[1],1); Serial.println(" g"); Serial.print("z-axis self test: acceleration delta is : "); Serial.print(SelfTest[2],1); Serial.println(" g"); delay(1000); AK8963SelfTest(); // Get magnetometer calibration from AK8963 ROM initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer if(SerialDebug) { Serial.println("Calibration values: "); Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2); Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2); Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2); } magcalAK8963(magBias); Serial.println("mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]); delay(1000); // add delay to see results before serial spew of data } else { Serial.print("Could not connect to BMI160: 0x"); Serial.println(c, HEX); while(1) ; // Loop forever if communication doesn't happen } } } void loop() { if(!passThru) { // Check event status register, way to chech data ready by polling rather than interrupt uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register // Check for errors if(eventStatus & 0x02) { // error detected, what is it? uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister); if(!errorStatus) { Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus); if(errorStatus == 0x11) Serial.print("Magnetometer failure!"); if(errorStatus == 0x12) Serial.print("Accelerometer failure!"); if(errorStatus == 0x14) Serial.print("Gyro failure!"); if(errorStatus == 0x21) Serial.print("Magnetometer initialization failure!"); if(errorStatus == 0x22) Serial.print("Accelerometer initialization failure!"); if(errorStatus == 0x24) Serial.print("Gyro initialization failure!"); if(errorStatus == 0x30) Serial.print("Math error!"); if(errorStatus == 0x80) Serial.print("Invalid sample rate!"); } // Handle errors ToDo } // if no errors, see if new data is ready if(eventStatus & 0x10) { // new acceleration data available readSENtralAccelData(accelCount); // Now we'll calculate the accleration value into actual g's ax = (float)accelCount[0]*0.000488; // get actual g value ay = (float)accelCount[1]*0.000488; az = (float)accelCount[2]*0.000488; } if(eventStatus & 0x20) { // new gyro data available readSENtralGyroData(gyroCount); // Now we'll calculate the gyro value into actual dps's gx = (float)gyroCount[0]*0.153; // get actual dps value gy = (float)gyroCount[1]*0.153; gz = (float)gyroCount[2]*0.153; } if(eventStatus & 0x08) { // new mag data available readSENtralMagData(magCount); // Now we'll calculate the mag value into actual G's mx = (float)magCount[0]*0.305176; // get actual G value my = (float)magCount[1]*0.305176; mz = (float)magCount[2]*0.305176; } if(eventStatus & 0x04) { // new quaternion data available readSENtralQuatData(Quat); } } if(passThru) { if (readByte(BMI160_ADDRESS, BMI160_STATUS) & 0x40) { // check if new gyro data readAccelGyroData(gyroCount, accelCount); // Read the x/y/z adc values // Now we'll calculate the accleration value into actual g's ax = (float)accelCount[0]*aRes; // get actual g value, this depends on scale being set ay = (float)accelCount[1]*aRes; az = (float)accelCount[2]*aRes; // Calculate the gyro value into actual degrees per second gx = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set gy = (float)gyroCount[1]*gRes; gz = (float)gyroCount[2]*gRes; } if (readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // Check magnetometer data ready bit readMagData(magCount); // Read the x/y/z adc values // Calculate the magnetometer values in milliGauss // Temperature-compensated magnetic field is in 16 LSB/microTesla mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1]; mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2]; } } // keep track of rates Now = micros(); deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update lastUpdate = Now; // Check to make sure the EM7180 is running properly // uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset"); // if(eventStatus & 0x02) Serial.println(" EM7180 Error"); // if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result"); // if(eventStatus & 0x08) Serial.println(" EM7180 new mag result"); // if(eventStatus & 0x10) Serial.println(" EM7180 new accel result"); // if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); sum += deltat; // sum for averaging filter update rate sumCount++; // Use NED orientaton convention where N is direction of arrow on the board // AK8963C has N = -y, E = -x, and D = -z if top of board == North // BMI160 has N = x, E - -y, and D - -z for the gyro, and opposite by convention for the accel // This rotation can be modified to allow any convenient orientation convention. // Pass gyro rate as rad/s MadgwickQuaternionUpdate(-ax, ay, az, gx*PI/180.0f, -gy*PI/180.0f, -gz*PI/180.0f, -my, -mx, -mz); // if(passThru)MahonyQuaternionUpdate(-ax, ay, az, gx*PI/180.0f, -gy*PI/180.0f, -gz*PI/180.0f, -my, -mx, -mz); // Serial print and/or display at 0.5 s rate independent of data rates delt_t = millis() - count; if (delt_t > 500) { // update LCD once per half-second independent of read rate if(SerialDebug) { Serial.print("ax = "); Serial.print((int)1000*ax); Serial.print(" ay = "); Serial.print((int)1000*ay); Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg"); Serial.print("gx = "); Serial.print( gx, 2); Serial.print(" gy = "); Serial.print( gy, 2); Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s"); Serial.print("mx = "); Serial.print( (int)mx); Serial.print(" my = "); Serial.print( (int)my); Serial.print(" mz = "); Serial.print( (int)mz); Serial.println(" mG"); Serial.println("Software quaternions:"); Serial.print("q0 = "); Serial.print(q[0]); Serial.print(" qx = "); Serial.print(q[1]); Serial.print(" qy = "); Serial.print(q[2]); Serial.print(" qz = "); Serial.println(q[3]); Serial.println("Hardware quaternions:"); Serial.print("Q0 = "); Serial.print(Quat[0]); Serial.print(" Qx = "); Serial.print(Quat[1]); Serial.print(" Qy = "); Serial.print(Quat[2]); Serial.print(" Qz = "); Serial.println(Quat[3]); } tempCount = readTempData(); // Read the gyro adc values temperature = ((float) tempCount) / 512.0 + 23.0; // Gyro chip temperature in degrees Centigrade // Print temperature in degrees Centigrade Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. // In this coordinate system, the positive z-axis is down toward Earth. // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be // applied in the correct order which for this configuration is yaw, pitch, and then roll. // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. //Software AHRS: yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); pitch *= 180.0f / PI; yaw *= 180.0f / PI; yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360 roll *= 180.0f / PI; //Hardware AHRS: Yaw = atan2(2.0f * (Quat[0] * Quat[1] + Quat[3] * Quat[2]), Quat[3] * Quat[3] + Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2]); Pitch = -asin(2.0f * (Quat[0] * Quat[2] - Quat[3] * Quat[1])); Roll = atan2(2.0f * (Quat[3] * Quat[0] + Quat[1] * Quat[2]), Quat[3] * Quat[3] - Quat[0] * Quat[0] - Quat[1] * Quat[1] + Quat[2] * Quat[2]); Pitch *= 180.0f / PI; Yaw *= 180.0f / PI; Yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 if(Yaw < 0) Yaw += 360.0f ; // Ensure yaw stays between 0 and 360 Roll *= 180.0f / PI; // Or define output variable according to the Android system, where heading (0 to 260) is defined by the angle between the y-axis // and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90) // In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis // points toward the right of the device. // if(SerialDebug) { Serial.print("Software yaw, pitch, roll: "); Serial.print(yaw, 2); Serial.print(", "); Serial.print(pitch, 2); Serial.print(", "); Serial.println(roll, 2); Serial.print("Hardware Yaw, Pitch, Roll: "); Serial.print(Yaw, 2); Serial.print(", "); Serial.print(Pitch, 2); Serial.print(", "); Serial.println(Roll, 2); Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz"); } digitalWrite(myLed, !digitalRead(myLed)); count = millis(); sumCount = 0; sum = 0; } } //=================================================================================================================== //====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data //=================================================================================================================== float uint32_reg_to_float (uint8_t *buf) { union { uint32_t ui32; float f; } u; u.ui32 = (((uint32_t)buf[0]) + (((uint32_t)buf[1]) << 8) + (((uint32_t)buf[2]) << 16) + (((uint32_t)buf[3]) << 24)); return u.f; } void float_to_bytes (float param_val, uint8_t *buf) { union { float f; uint8_t comp[sizeof(float)]; } u; u.f = param_val; for (uint8_t i=0; i < sizeof(float); i++) { buf[i] = u.comp[i]; } //Convert to LITTLE ENDIAN for (uint8_t i=0; i < sizeof(float); i++) { buf[i] = buf[(sizeof(float)-1) - i]; } } void readSENtralQuatData(float * destination) { uint8_t rawData[16]; // x/y/z quaternion register data stored here readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array destination[1] = uint32_reg_to_float (&rawData[0]); destination[2] = uint32_reg_to_float (&rawData[4]); destination[3] = uint32_reg_to_float (&rawData[8]); destination[0] = uint32_reg_to_float (&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! } void readSENtralAccelData(int16_t * destination) { uint8_t rawData[6]; // x/y/z accel register data stored here readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } void readSENtralGyroData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } void readSENtralMagData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } void getMres() { switch (Mscale) { // Possible magnetometer scales (and their register bit settings) are: // 14 bit resolution (0) and 16 bit resolution (1) case MFS_14BITS: mRes = 10.*4219./8190.; // Proper scale to return milliGauss break; case MFS_16BITS: mRes = 10.*4219./32760.0; // Proper scale to return milliGauss break; } } void getGres() { switch (Gscale) { // Possible gyro scales (and their register bit settings) are: // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). case GFS_125DPS: gRes = 125.0/32768.0; break; case GFS_250DPS: gRes = 250.0/32768.0; break; case GFS_500DPS: gRes = 500.0/32768.0; break; case GFS_1000DPS: gRes = 1000.0/32768.0; break; case GFS_2000DPS: gRes = 2000.0/32768.0; break; } } void getAres() { switch (Ascale) { // Possible accelerometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (05), 8 Gs (08), and 16 Gs (0C). case AFS_2G: aRes = 2.0/32768.0; break; case AFS_4G: aRes = 4.0/32768.0; break; case AFS_8G: aRes = 8.0/32768.0; break; case AFS_16G: aRes = 16.0/32768.0; break; } } void readAccelGyroData(int16_t * dest1, int16_t * dest2) { uint8_t rawData[12]; // x/y/z accel register data stored here readBytes(BMI160_ADDRESS, BMI160_GYRO_DATA, 12, &rawData[0]); // Read the twelve raw data registers into data array dest1[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn gyro MSB and LSB into a signed 16-bit value dest1[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; dest1[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; dest2[0] = ((int16_t)rawData[7] << 8) | rawData[6] ; // Turn accel MSB and LSB into a signed 16-bit value dest2[1] = ((int16_t)rawData[9] << 8) | rawData[8] ; dest2[2] = ((int16_t)rawData[11] << 8) | rawData[10] ; } void readMagData(int16_t * destination) { uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array uint8_t c = rawData[6]; // End data read by reading ST2 register if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; } } } int16_t readTempData() { uint8_t rawData[2]; // x/y/z gyro register data stored here readBytes(BMI160_ADDRESS, BMI160_TEMPERATURE, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a 16-bit value } void initAK8963(float * destination) { // First extract the factory calibration for each magnetometer axis uint8_t rawData[3]; // x/y/z mag calibration data stored here writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(20); writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode delay(20); readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc. destination[1] = (float)(rawData[1] - 128)/256. + 1.; destination[2] = (float)(rawData[2] - 128)/256. + 1.; writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(20); // Configure the magnetometer for continuous read and highest resolution // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR delay(20); } void AK8963SelfTest() { int16_t SelfTestData[3]; // x/y/z self test result stored here writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(20); writeByte(AK8963_ADDRESS, AK8963_ASTC, 0x40); // Enable self test writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x18); // enter self test mode, use 16-bit data while(!(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01)); // wait for data ready bit readMagData(SelfTestData); writeByte(AK8963_ADDRESS, AK8963_ASTC, 0x00); // Disable self test writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer delay(20); Serial.print("x-axis self test = "); Serial.print(SelfTestData[0]); Serial.println(" should be +/- 200"); Serial.print("y-axis self test = "); Serial.print(SelfTestData[1]); Serial.println(" should be +/- 200"); Serial.print("z-axis self test = "); Serial.print(SelfTestData[2]); Serial.println(" should be -3200 to -800"); } void initBMI160() { // configure accel and gyro writeByte(BMI160_ADDRESS, BMI160_CMD, 0x11); // Set accel in normal mode operation delay(50); // Wait for accel to reset writeByte(BMI160_ADDRESS, BMI160_CMD, 0x15); // Set gyro in normal mode operation delay(100); // Wait for gyro to reset // Define accel full scale and sample rate writeByte(BMI160_ADDRESS, BMI160_ACC_RANGE, Ascale); writeByte(BMI160_ADDRESS, BMI160_ACC_CONF, ABW << 4 | AODR); // Define gyro full scale and sample rate writeByte(BMI160_ADDRESS, BMI160_GYR_RANGE, Gscale); writeByte(BMI160_ADDRESS, BMI160_GYR_CONF, GBW << 4 | GODR); } void accelgyrofastcalBMI160(float * dest1, float * dest2) { uint8_t rawData[7] = {0, 0, 0, 0, 0, 0, 0}; writeByte(BMI160_ADDRESS, BMI160_FOC_CONF, 0x4 | 0x30 | 0x0C | 0x01); // Enable gyro cal and accel cal with 0, 0, 1 as reference delay(20); writeByte(BMI160_ADDRESS, BMI160_CMD, 0x03); // start fast calibration delay(50); if(readByte(BMI160_ADDRESS, BMI160_ERR_REG) & 0x40) { // check if dropped command Serial.println("Dropped fast offset compensation command!"); return; } while(!(readByte(BMI160_ADDRESS, BMI160_STATUS) & 0x08)); // wait for fast compensation data ready bit if((readByte(BMI160_ADDRESS, BMI160_STATUS) & 0x08)) { readBytes(BMI160_ADDRESS, BMI160_OFFSET, 7, &rawData[0]); // Read the seven raw data registers into data array dest1[0] = (float)(((int16_t)(rawData[0] << 8 ) | 0x00) >> 8); // Turn accel offset into a signed 8-bit value dest1[1] = (float)(((int16_t)(rawData[1] << 8 ) | 0x00) >> 8); dest1[2] = (float)(((int16_t)(rawData[2] << 8 ) | 0x00) >> 8); dest2[0] = (float)((((int16_t)(rawData[7] & 0x03) << 8) | rawData[3]) >> 6); // Turn gyro offset MSB and LSB into a signed 10-bit value dest2[1] = (float)((((int16_t)(rawData[7] & 0x0C) << 8) | rawData[4]) >> 6); dest2[2] = (float)((((int16_t)(rawData[7] & 0x30) << 8) | rawData[5]) >> 6); writeByte(BMI160_ADDRESS, BMI160_OFFSET_CONF, 0x40); // enable use of offset registers in data output } else { Serial.println("couldn't get offsets!"); } } void magcalAK8963(float * dest1) { uint16_t ii = 0, sample_count = 0; int32_t mag_bias[3] = {0, 0, 0}; int16_t mag_max[3] = {0X8000, 0X8000, 0X8000}, mag_min[3] = {0X7FFF, 0X7FFF, 0X7FFF}, mag_temp[3] = {0, 0, 0}; Serial.println("Mag Calibration: Wave device in a figure eight until done!"); delay(4000); sample_count = 512; for(ii = 0; ii < sample_count; ii++) { readMagData(mag_temp); // Read the mag data for (int jj = 0; jj < 3; jj++) { if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj]; if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj]; } delay(11); // at 100 Hz ODR, new mag data is available every 10 ms } // Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]); // Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]); // Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]); mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0]; // save mag biases in G for main program dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1]; dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2]; Serial.println("Mag Calibration done!"); } void BMI160SelfTest(float * destination) { uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; uint16_t selfTestp[3], selfTestm[3]; // Enable Gyro Self Test writeByte(BMI160_ADDRESS, BMI160_SELF_TEST, 0x10); // Enable Gyro Self Test delay(100); uint8_t result = readByte(BMI160_ADDRESS, BMI160_STATUS); if(result & 0x02) { Serial.println("Gyro Self test passed!"); } else { Serial.println("Gyro Self test failed!"); } // disable self test writeByte(BMI160_ADDRESS, BMI160_SELF_TEST, 0x00 ); // disable Self Test delay(100); // Configure for Accel Self test writeByte(BMI160_ADDRESS, BMI160_ACC_RANGE, AFS_8G); // set range to 8 g writeByte(BMI160_ADDRESS, BMI160_ACC_CONF, 0x2C ); // Configure accel for Self Test // Enable Accel Self Test-positive deflection writeByte(BMI160_ADDRESS, BMI160_SELF_TEST, 0x08 | 0x04 | 0x01 ); // Enable accel Self Test positive delay(100); readBytes(BMI160_ADDRESS, BMI160_ACCEL_DATA, 6, &rawData[0]); // Read the six raw data registers into data array selfTestp[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn accel MSB and LSB into a signed 16-bit value selfTestp[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; selfTestp[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; // disable self test writeByte(BMI160_ADDRESS, BMI160_SELF_TEST, 0x00 ); // disable Self Test delay(100); // Enable Accel Self Test-negative deflection writeByte(BMI160_ADDRESS, BMI160_SELF_TEST, 0x08 | 0x01 ); // Enable accel Self Test negative delay(100); readBytes(BMI160_ADDRESS, BMI160_ACCEL_DATA, 6, &rawData[0]); // Read the six raw data registers into data array selfTestm[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn accel MSB and LSB into a signed 16-bit value selfTestm[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; selfTestm[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; // Serial.println(selfTestp[0]);Serial.println(selfTestp[1]);Serial.println(selfTestp[2]); // Serial.println(selfTestm[0]);Serial.println(selfTestm[1]);Serial.println(selfTestm[2]); destination[0] = (float)(selfTestp[0] - selfTestm[0])*8./32768.; //construct differences between positve and negative defection, should be ~2 g destination[1] = (float)(selfTestp[1] - selfTestm[1])*8./32768.; destination[2] = (float)(selfTestp[2] - selfTestm[2])*8./32768.; // disable self test writeByte(BMI160_ADDRESS, BMI160_SELF_TEST, 0x00 ); // disable Self Test delay(100); writeByte(BMI160_ADDRESS, BMI160_ACC_RANGE, Ascale); // set range to original value writeByte(BMI160_ADDRESS, BMI160_ACC_CONF, ABW << 4 | AODR); // return accel to original configuration // End self tests } void SENtralPassThroughMode() { // First put SENtral in standby mode uint8_t c = readByte(EM7180_ADDRESS, EM7180_AlgorithmControl); writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01); // c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); // Serial.print("c = "); Serial.println(c); // Verify standby status // if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) { Serial.println("SENtral in standby mode"); // Place SENtral in pass-through mode writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); if(readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) { Serial.println("SENtral in pass-through mode"); } else { Serial.println("ERROR! SENtral not in pass-through mode!"); } } // I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor // since the address is defined by two bytes void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data) { Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer Wire.write(data); // Put data in Tx buffer Wire.endTransmission(); // Send the Tx buffer } void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) { if(count > 128) { count = 128; Serial.print("Page count cannot be more than 128 bytes!"); } Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer for(uint8_t i=0; i < count; i++) { Wire.write(dest[i]); // Put data in Tx buffer } Wire.endTransmission(); // Send the Tx buffer } uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2) { uint8_t data; // `data` will store the register data Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive // Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive // Wire.requestFrom(address, 1); // Read one byte from slave register address Wire.requestFrom(device_address, (size_t) 1); // Read one byte from slave register address data = Wire.read(); // Fill Rx buffer with result return data; // Return data read from slave register } void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) { Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive // Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive uint8_t i = 0; // Wire.requestFrom(address, count); // Read bytes from slave register address Wire.requestFrom(device_address, (size_t) count); // Read bytes from slave register address while (Wire.available()) { dest[i++] = Wire.read(); } // Put read results in the Rx buffer } // simple function to scan for I2C devices on the bus void I2Cscan() { // scan for i2c devices byte error, address; int nDevices; Serial.println("Scanning..."); nDevices = 0; for(address = 1; address < 127; address++ ) { // The i2c_scanner uses the return value of // the Write.endTransmisstion to see if // a device did acknowledge to the address. Wire.beginTransmission(address); error = Wire.endTransmission(); if (error == 0) { Serial.print("I2C device found at address 0x"); if (address<16) Serial.print("0"); Serial.print(address,HEX); Serial.println(" !"); nDevices++; } else if (error==4) { Serial.print("Unknow error at address 0x"); if (address<16) Serial.print("0"); Serial.println(address,HEX); } } if (nDevices == 0) Serial.println("No I2C devices found\n"); else Serial.println("done\n"); } // I2C read/write functions for the MPU6500 and AK8963 sensors void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) { Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.write(data); // Put data in Tx buffer Wire.endTransmission(); // Send the Tx buffer } uint8_t readByte(uint8_t address, uint8_t subAddress) { uint8_t data; // `data` will store the register data Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive // Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive // Wire.requestFrom(address, 1); // Read one byte from slave register address Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address data = Wire.read(); // Fill Rx buffer with result return data; // Return data read from slave register } void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) { Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive // Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive uint8_t i = 0; // Wire.requestFrom(address, count); // Read bytes from slave register address Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address while (Wire.available()) { dest[i++] = Wire.read(); } // Put read results in the Rx buffer } void EM7180_set_gyro_FS (uint16_t gyro_fs) { uint8_t bytes[4], STAT; bytes[0] = gyro_fs & (0xFF); bytes[1] = (gyro_fs >> 8) & (0xFF); bytes[2] = 0x00; bytes[3] = 0x00; writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==0xCB)) { STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) { uint8_t bytes[4], STAT; bytes[0] = mag_fs & (0xFF); bytes[1] = (mag_fs >> 8) & (0xFF); bytes[2] = acc_fs & (0xFF); bytes[3] = (acc_fs >> 8) & (0xFF); writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==0xCA)) { STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void EM7180_set_integer_param (uint8_t param, uint32_t param_val) { uint8_t bytes[4], STAT; bytes[0] = param_val & (0xFF); bytes[1] = (param_val >> 8) & (0xFF); bytes[2] = (param_val >> 16) & (0xFF); bytes[3] = (param_val >> 24) & (0xFF); param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==param)) { STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void EM7180_set_float_param (uint8_t param, float param_val) { uint8_t bytes[4], STAT; float_to_bytes (param_val, &bytes[0]); param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==param)) { STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm }