/* 06/29/2017 Copyright Tlera Corporation * * Created by Kris Winer * * * Library may be used freely and without limit with attribution. * */ #include "USFS.h" USFS::USFS(uint8_t intPin, bool passThru, I2Cdev* i2c_bus) { _intPin = intPin; _passThru = passThru; _i2c_bus = i2c_bus; } void USFS::getChipID() { // Read SENtral device information uint16_t ROM1 = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ROMVersion1); uint16_t ROM2 = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ROMVersion2); Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609"); uint16_t RAM1 = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_RAMVersion1); uint16_t RAM2 = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_RAMVersion2); Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2); uint8_t PID = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ProductID); Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80"); uint8_t RID = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_RevisionID); Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02"); } void USFS::loadfwfromEEPROM() { // Check which sensors can be detected by the EM7180 uint8_t featureflag = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_FeatureFlags); if(featureflag & 0x01) Serial.println("A barometer is installed"); if(featureflag & 0x02) Serial.println("A humidity sensor is installed"); if(featureflag & 0x04) Serial.println("A temperature sensor is installed"); if(featureflag & 0x08) Serial.println("A custom sensor is installed"); if(featureflag & 0x10) Serial.println("A second custom sensor is installed"); if(featureflag & 0x20) Serial.println("A third custom sensor is installed"); delay(1000); // give some time to read the screen // Check SENtral status, make sure EEPROM upload of firmware was accomplished byte STAT = (_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); int count = 0; while(!STAT) { _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); delay(500); count++; STAT = (_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!"); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!"); if(count > 10) break; } if(!(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!"); } uint8_t USFS::checkEM7180Status(){ // Check event status register, way to check data ready by polling rather than interrupt uint8_t c = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt return c; } uint8_t USFS::checkEM7180Errors(){ uint8_t c = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ErrorRegister); // check error register return c; } void USFS::initEM7180(uint8_t accBW, uint8_t gyroBW, uint16_t accFS, uint16_t gyroFS, uint16_t magFS, uint8_t QRtDiv, uint8_t magRt, uint8_t accRt, uint8_t gyroRt, uint8_t baroRt) { uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges uint8_t param[4]; // Enter EM7180 initialized state _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers //Setup LPF bandwidth (BEFORE setting ODR's) _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz // Set accel/gyro/mag desired ODR rates _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, QRtDiv); // quat rate = gyroRt/(1 QRTDiv) _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_MagRate, magRt); // 0x64 = 100 Hz _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AccelRate, accRt); // 200/10 Hz, 0x14 = 200 Hz _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_GyroRate, gyroRt); // 200/10 Hz, 0x14 = 200 Hz _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | baroRt); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz // Configure operating mode _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data // Enable interrupt to host upon certain events // choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), // new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) _i2c_bus-> writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); // Enable EM7180 run mode _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode delay(100); // EM7180 parameter adjustments Serial.println("Beginning Parameter Adjustments"); // Read sensor default FS values from parameter space _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process byte param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4A)) { param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4B)) { param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm //Disable stillness mode for balancing robot application EM7180_set_integer_param (0x49, 0x00); //Write desired sensor full scale ranges to the EM7180 EM7180_set_mag_acc_FS (magFS, accFS); // 1000 uT == 0x3E8, 8 g == 0x08 EM7180_set_gyro_FS (gyroFS); // 2000 dps == 0x7D0 // Read sensor new FS values from parameter space _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4A)) { param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]); EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]); Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT"); Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g"); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); while(!(param_xfer==0x4B)) { param_xfer = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } param[0] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte0); param[1] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte1); param[2] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte2); param[3] = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SavedParamByte3); EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]); Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps"); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm // Read EM7180 status uint8_t runStatus = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_RunStatus); if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode"); uint8_t algoStatus = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); if(algoStatus & 0x01) Serial.println(" EM7180 standby status"); if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow"); if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode"); if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed"); if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected"); if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data"); uint8_t passthruStatus = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_PassThruStatus); if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!"); uint8_t eventStatus = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_EventStatus); if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset"); if(eventStatus & 0x02) Serial.println(" EM7180 Error"); if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result"); if(eventStatus & 0x08) Serial.println(" EM7180 new mag result"); if(eventStatus & 0x10) Serial.println(" EM7180 new accel result"); if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); delay(1000); // give some time to read the screen // Check sensor status uint8_t sensorStatus = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_SensorStatus); Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus); if(sensorStatus & 0x01) Serial.print("Magnetometer not acknowledging!"); if(sensorStatus & 0x02) Serial.print("Accelerometer not acknowledging!"); if(sensorStatus & 0x04) Serial.print("Gyro not acknowledging!"); if(sensorStatus & 0x10) Serial.print("Magnetometer ID not recognized!"); if(sensorStatus & 0x20) Serial.print("Accelerometer ID not recognized!"); if(sensorStatus & 0x40) Serial.print("Gyro ID not recognized!"); Serial.print("Actual MagRate = "); Serial.print(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz"); Serial.print("Actual AccelRate = "); Serial.print(10*(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_ActualAccelRate))); Serial.println(" Hz"); Serial.print("Actual GyroRate = "); Serial.print(10*(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_ActualGyroRate))); Serial.println(" Hz"); Serial.print("Actual BaroRate = "); Serial.print(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_ActualBaroRate)); Serial.println(" Hz"); } float USFS::uint32_reg_to_float (uint8_t *buf) { union { uint32_t ui32; float f; } u; u.ui32 = (((uint32_t)buf[0]) + (((uint32_t)buf[1]) << 8) + (((uint32_t)buf[2]) << 16) + (((uint32_t)buf[3]) << 24)); return u.f; } float USFS::int32_reg_to_float (uint8_t *buf) { union { int32_t i32; float f; } u; u.i32 = (((int32_t)buf[0]) + (((int32_t)buf[1]) << 8) + (((int32_t)buf[2]) << 16) + (((int32_t)buf[3]) << 24)); return u.f; } void USFS::float_to_bytes (float param_val, uint8_t *buf) { union { float f; uint8_t comp[sizeof(float)]; } u; u.f = param_val; for (uint8_t i=0; i < sizeof(float); i++) { buf[i] = u.comp[i]; } //Convert to LITTLE ENDIAN for (uint8_t i=0; i < sizeof(float); i++) { buf[i] = buf[(sizeof(float)-1) - i]; } } void USFS::EM7180_set_gyro_FS (uint16_t gyro_fs) { uint8_t bytes[4], STAT; bytes[0] = gyro_fs & (0xFF); bytes[1] = (gyro_fs >> 8) & (0xFF); bytes[2] = 0x00; bytes[3] = 0x00; _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==0xCB)) { STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void USFS::EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) { uint8_t bytes[4], STAT; bytes[0] = mag_fs & (0xFF); bytes[1] = (mag_fs >> 8) & (0xFF); bytes[2] = acc_fs & (0xFF); bytes[3] = (acc_fs >> 8) & (0xFF); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==0xCA)) { STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void USFS::EM7180_set_integer_param (uint8_t param, uint32_t param_val) { uint8_t bytes[4], STAT; bytes[0] = param_val & (0xFF); bytes[1] = (param_val >> 8) & (0xFF); bytes[2] = (param_val >> 16) & (0xFF); bytes[3] = (param_val >> 24) & (0xFF); param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==param)) { STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void USFS::EM7180_set_float_param (uint8_t param, float param_val) { uint8_t bytes[4], STAT; float_to_bytes (param_val, &bytes[0]); param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte while(!(STAT==param)) { STAT = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); } _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm } void USFS::readSENtralQuatData(float * destination) { uint8_t rawData[16]; // x/y/z quaternion register data stored here _i2c_bus->readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array destination[1] = uint32_reg_to_float (&rawData[0]); destination[2] = uint32_reg_to_float (&rawData[4]); destination[3] = uint32_reg_to_float (&rawData[8]); destination[0] = uint32_reg_to_float (&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! } void USFS::readSENtralAccelData(int16_t * destination) { uint8_t rawData[6]; // x/y/z accel register data stored here _i2c_bus->readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } void USFS::readSENtralGyroData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here _i2c_bus->readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } void USFS::readSENtralMagData(int16_t * destination) { uint8_t rawData[6]; // x/y/z gyro register data stored here _i2c_bus->readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]); destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); } int16_t USFS::readSENtralBaroData() { uint8_t rawData[2]; // x/y/z gyro register data stored here _i2c_bus->readBytes(EM7180_ADDRESS, EM7180_Baro, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value } int16_t USFS::readSENtralTempData() { uint8_t rawData[2]; // x/y/z gyro register data stored here _i2c_bus->readBytes(EM7180_ADDRESS, EM7180_Temp, 2, &rawData[0]); // Read the two raw data registers sequentially into data array return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value } void USFS::SENtralPassThroughMode() { // First put SENtral in standby mode uint8_t c = _i2c_bus->readByte(EM7180_ADDRESS, EM7180_AlgorithmControl); _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01); // c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); // Serial.print("c = "); Serial.println(c); // Verify standby status // if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) { Serial.println("SENtral in standby mode"); // Place SENtral in pass-through mode _i2c_bus->writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); if(_i2c_bus->readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) { Serial.println("SENtral in pass-through mode"); } else { Serial.println("ERROR! SENtral not in pass-through mode!"); } } // I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor // since the address is defined by two bytes void USFS::M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data) { Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer Wire.write(data); // Put data in Tx buffer Wire.endTransmission(); // Send the Tx buffer } void USFS::M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) { if(count > 128) { count = 128; Serial.print("Page count cannot be more than 128 bytes!"); } Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer for(uint8_t i=0; i < count; i++) { Wire.write(dest[i]); // Put data in Tx buffer } Wire.endTransmission(); // Send the Tx buffer } uint8_t USFS::M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2) { uint8_t data; // `data` will store the register data Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive Wire.requestFrom(device_address, 1); // Read one byte from slave register address data = Wire.read(); // Fill Rx buffer with result return data; // Return data read from slave register } void USFS::M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest) { uint8_t temp[2] = {data_address1, data_address2}; Wire.beginTransmission(device_address); // Initialize the Tx buffer Wire.write(data_address1); // Put slave register address in Tx buffer Wire.write(data_address2); // Put slave register address in Tx buffer Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive uint8_t i = 0; Wire.requestFrom(device_address, count); // Read bytes from slave register address while (Wire.available()) { dest[i++] = Wire.read(); } // Put read results in the Rx buffer } // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! void USFS::MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability float norm; float hx, hy, _2bx, _2bz; float s1, s2, s3, s4; float qDot1, qDot2, qDot3, qDot4; // Auxiliary variables to avoid repeated arithmetic float _2q1mx; float _2q1my; float _2q1mz; float _2q2mx; float _4bx; float _4bz; float _2q1 = 2.0f * q1; float _2q2 = 2.0f * q2; float _2q3 = 2.0f * q3; float _2q4 = 2.0f * q4; float _2q1q3 = 2.0f * q1 * q3; float _2q3q4 = 2.0f * q3 * q4; float q1q1 = q1 * q1; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrt(ax * ax + ay * ay + az * az); if (norm == 0.0f) return; // handle NaN norm = 1.0f/norm; ax *= norm; ay *= norm; az *= norm; // Normalise magnetometer measurement norm = sqrt(mx * mx + my * my + mz * mz); if (norm == 0.0f) return; // handle NaN norm = 1.0f/norm; mx *= norm; my *= norm; mz *= norm; // Reference direction of Earth's magnetic field _2q1mx = 2.0f * q1 * mx; _2q1my = 2.0f * q1 * my; _2q1mz = 2.0f * q1 * mz; _2q2mx = 2.0f * q2 * mx; hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; _2bx = sqrt(hx * hx + hy * hy); _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; _4bx = 2.0f * _2bx; _4bz = 2.0f * _2bz; // Gradient decent algorithm corrective step s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude norm = 1.0f/norm; s1 *= norm; s2 *= norm; s3 *= norm; s4 *= norm; // Compute rate of change of quaternion qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - _beta * s1; qDot2 = 0.5f * ( q1 * gx + q3 * gz - q4 * gy) - _beta * s2; qDot3 = 0.5f * ( q1 * gy - q2 * gz + q4 * gx) - _beta * s3; qDot4 = 0.5f * ( q1 * gz + q2 * gy - q3 * gx) - _beta * s4; // Integrate to yield quaternion q1 += qDot1 * _deltat; q2 += qDot2 * _deltat; q3 += qDot3 * _deltat; q4 += qDot4 * _deltat; norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion norm = 1.0f/norm; _q[0] = q1 * norm; _q[1] = q2 * norm; _q[2] = q3 * norm; _q[3] = q4 * norm; } // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and // measured ones. void USFS::MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) { float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method float norm; float hx, hy, bx, bz; float vx, vy, vz, wx, wy, wz; float ex, ey, ez; float pa, pb, pc; // Auxiliary variables to avoid repeated arithmetic float q1q1 = q1 * q1; float q1q2 = q1 * q2; float q1q3 = q1 * q3; float q1q4 = q1 * q4; float q2q2 = q2 * q2; float q2q3 = q2 * q3; float q2q4 = q2 * q4; float q3q3 = q3 * q3; float q3q4 = q3 * q4; float q4q4 = q4 * q4; // Normalise accelerometer measurement norm = sqrt(ax * ax + ay * ay + az * az); if (norm == 0.0f) return; // handle NaN norm = 1.0f / norm; // use reciprocal for division ax *= norm; ay *= norm; az *= norm; // Normalise magnetometer measurement norm = sqrt(mx * mx + my * my + mz * mz); if (norm == 0.0f) return; // handle NaN norm = 1.0f / norm; // use reciprocal for division mx *= norm; my *= norm; mz *= norm; // Reference direction of Earth's magnetic field hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); bx = sqrt((hx * hx) + (hy * hy)); bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); // Estimated direction of gravity and magnetic field vx = 2.0f * (q2q4 - q1q3); vy = 2.0f * (q1q2 + q3q4); vz = q1q1 - q2q2 - q3q3 + q4q4; wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); // Error is cross product between estimated direction and measured direction of gravity ex = (ay * vz - az * vy) + (my * wz - mz * wy); ey = (az * vx - ax * vz) + (mz * wx - mx * wz); ez = (ax * vy - ay * vx) + (mx * wy - my * wx); if (_Ki > 0.0f) { eInt[0] += ex; // accumulate integral error eInt[1] += ey; eInt[2] += ez; } else { eInt[0] = 0.0f; // prevent integral wind up eInt[1] = 0.0f; eInt[2] = 0.0f; } // Apply feedback terms gx = gx + _Kp * ex + _Ki * eInt[0]; gy = gy + _Kp * ey + _Ki * eInt[1]; gz = gz + _Kp * ez + _Ki * eInt[2]; // Integrate rate of change of quaternion pa = q2; pb = q3; pc = q4; q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * _deltat); q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * _deltat); q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * _deltat); q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * _deltat); // Normalise quaternion norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); norm = 1.0f / norm; _q[0] = q1 * norm; _q[1] = q2 * norm; _q[2] = q3 * norm; _q[3] = q4 * norm; }