/* * lis2mdl.c * The LIS2MDL is a low power magnetometer, here used as 3 DoF in a 10 DoF * absolute orientation solution. * * Created on: Jan 18, 2021 * Author: Daniel Peter Chokola * * Adapted From: * EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly * by: Kris Winer * 09/23/2017 Copyright Tlera Corporation * * Library may be used freely and without limit with attribution. */ /* Includes */ #include #include #include /* Definitions */ /* * Register map for LIS2MDL * http://www.st.com/content/ccc/resource/technical/document/datasheet/group3/29/13/d1/e0/9a/4d/4f/30/DM00395193/files/DM00395193.pdf/jcr:content/translations/en.DM00395193.pdf */ #define LIS2MDL_OFFSET_X_REG_L 0x45 #define LIS2MDL_OFFSET_X_REG_H 0x46 #define LIS2MDL_OFFSET_Y_REG_L 0x47 #define LIS2MDL_OFFSET_Y_REG_H 0x48 #define LIS2MDL_OFFSET_Z_REG_L 0x49 #define LIS2MDL_OFFSET_Z_REG_H 0x4A #define LIS2MDL_WHO_AM_I 0x4F #define LIS2MDL_CFG_REG_A 0x60 #define LIS2MDL_CFG_REG_B 0x61 #define LIS2MDL_CFG_REG_C 0x62 #define LIS2MDL_INT_CTRL_REG 0x63 #define LIS2MDL_INT_SOURCE_REG 0x64 #define LIS2MDL_INT_THS_L_REG 0x65 #define LIS2MDL_INT_THS_H_REG 0x66 #define LIS2MDL_STATUS_REG 0x67 #define LIS2MDL_OUTX_L_REG 0x68 #define LIS2MDL_OUTX_H_REG 0x69 #define LIS2MDL_OUTY_L_REG 0x6A #define LIS2MDL_OUTY_H_REG 0x6B #define LIS2MDL_OUTZ_L_REG 0x6C #define LIS2MDL_OUTZ_H_REG 0x6D #define LIS2MDL_TEMP_OUT_L_REG 0x6E #define LIS2MDL_TEMP_OUT_H_REG 0x6F /* Macros */ #define lis2mdl_read_byte(addr, byte) i2c_read_byte((lis2mdl->i2c_read_func), (lis2mdl->i2c_addr), (addr), (byte)) #define lis2mdl_write_byte(addr, byte) i2c_write_byte((lis2mdl->i2c_write_func), (lis2mdl->i2c_addr), (addr), (byte)) #define lis2mdl_read(addr, data, len) i2c_read((lis2mdl->i2c_read_func), (lis2mdl->i2c_addr), (addr), (data), (len)) #define lis2mdl_write(addr, data, len) i2c_write((lis2mdl->i2c_write_func), (lis2mdl->i2c_addr), (addr), (data), (len)) /* Private Global Variables */ /* Function Prototypes */ /* Function Definitions */ lis2mdl_status_t lis2mdl_init(lis2mdl_t *lis2mdl, lis2mdl_init_t *init) { int8_t *ptr = (int8_t*) lis2mdl; size_t i; return_val_if_fail(lis2mdl, LIS2MDL_BAD_ARG); return_val_if_fail(init, LIS2MDL_BAD_ARG); /* zero lis2mdl_t struct */ for(i = 0; i < sizeof(lis2mdl_t); i++) { *ptr++ = 0; } lis2mdl->init = init; return LIS2MDL_OK; } void lis2mdl_set_delay_cb(lis2mdl_t *lis2mdl, delay_func_t delay_func) { return_if_fail(lis2mdl); lis2mdl->delay_func = delay_func; } void lis2mdl_set_i2c_cbs(lis2mdl_t *lis2mdl, i2c_read_func_t i2c_read_func, i2c_write_func_t i2c_write_func, uint8_t dev_addr) { return_if_fail(lis2mdl); lis2mdl->i2c_read_func = i2c_read_func; lis2mdl->i2c_write_func = i2c_write_func; lis2mdl->i2c_addr = dev_addr; } lis2mdl_status_t lis2mdl_config(lis2mdl_t *lis2mdl) { int32_t ret = 0; /* enable temperature compensation (bit 7 == 1), continuous mode (bits 0:1 == 00) */ ret |= lis2mdl_write_byte(LIS2MDL_CFG_REG_A, 0x80 | lis2mdl->init->m_odr << 2); /* enable low pass filter (bit 0 == 1), set to ODR/4 */ ret |= lis2mdl_write_byte(LIS2MDL_CFG_REG_B, 0x01); /* enable data ready on interrupt pin (bit 0 == 1), enable block data read (bit 4 == 1) */ ret |= lis2mdl_write_byte(LIS2MDL_CFG_REG_C, 0x01 | 0x10); return ret ? LIS2MDL_BAD_COMM : LIS2MDL_OK; } /* FIXME: haven't explored the usage/usefulness of these yet: */ #if(0) uint8_t lis2mdl_chip_id_get(lis2mdl_t *lis2mdl) { uint8_t c; lis2mdl_read_byte(LIS2MDL_WHO_AM_I, &c); return c; } void lis2mdl_reset(lis2mdl_t *lis2mdl) { // reset device uint8_t temp; lis2mdl_read_byte(LIS2MDL_CFG_REG_A, &temp); lis2mdl_write_byte(LIS2MDL_CFG_REG_A, temp | 0x20); // Set bit 5 to 1 to reset LIS2MDL lis2mdl->delay_func(1); lis2mdl_write_byte(LIS2MDL_CFG_REG_A, temp | 0x40); // Set bit 6 to 1 to boot LIS2MDL lis2mdl->delay_func(100); // Wait for all registers to reset } uint8_t lis2mdl_status(lis2mdl_t *lis2mdl) { // Read the status register of the altimeter uint8_t temp; lis2mdl_read_byte(LIS2MDL_STATUS_REG, &temp); return temp; } void lis2mdl_data_get(lis2mdl_t *lis2mdl, int16_t *destination) { uint8_t data[6]; // x/y/z mag register data stored here lis2mdl_read((0x80 | LIS2MDL_OUTX_L_REG), data, 8); // Read the 6 raw data registers into data array destination[0] = ((int16_t) data[1] << 8) | data[0]; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t) data[3] << 8) | data[2]; destination[2] = ((int16_t) data[5] << 8) | data[4]; } int16_t lis2mdl_temp_get(lis2mdl_t *lis2mdl) { uint8_t data[2]; // x/y/z mag register data stored here lis2mdl_read(0x80 | LIS2MDL_TEMP_OUT_L_REG, data, 2); // Read the 8 raw data registers into data array int16_t temp = ((int16_t) data[1] << 8) | data[0]; // Turn the MSB and LSB into a signed 16-bit value return temp; } void lis2mdl_offset_bias(lis2mdl_t *lis2mdl, float *dest1, float *dest2) { int32_t mag_bias[3] = { 0, 0, 0 }, mag_scale[3] = { 0, 0, 0 }; int16_t mag_max[3] = { -32767, -32767, -32767 }, mag_min[3] = { 32767, 32767, 32767 }, mag_temp[3] = { 0, 0, 0 }; float m_res = 0.0015f; /* Serial.println("Calculate mag offset bias: move all around to sample the complete response surface!"); */ lis2mdl->delay_func(4000); for(int ii = 0; ii < 4000; ii++) { lis2mdl_data_get(lis2mdl, mag_temp); for(int jj = 0; jj < 3; jj++) { if(mag_temp[jj] > mag_max[jj]) { mag_max[jj] = mag_temp[jj]; } if(mag_temp[jj] < mag_min[jj]) { mag_min[jj] = mag_temp[jj]; } } lis2mdl->delay_func(12); } m_res = 0.0015f; // fixed sensitivity // Get hard iron correction mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts dest1[0] = (float) mag_bias[0] * m_res; // save mag biases in G for main program dest1[1] = (float) mag_bias[1] * m_res; dest1[2] = (float) mag_bias[2] * m_res; // Get soft iron correction estimate mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; avg_rad /= 3.0f; dest2[0] = avg_rad / ((float) mag_scale[0]); dest2[1] = avg_rad / ((float) mag_scale[1]); dest2[2] = avg_rad / ((float) mag_scale[2]); /* Serial.println("Mag Calibration done!"); */ } void lis2mdl_self_test(lis2mdl_t *lis2mdl) { uint8_t c; int16_t temp[3] = { 0, 0, 0 }; float magTest[3] = { 0., 0., 0. }; float magNom[3] = { 0., 0., 0. }; int32_t sum[3] = { 0, 0, 0 }; float m_res = 0.0015f; // first, get average response with self test disabled for(int ii = 0; ii < 50; ii++) { lis2mdl_data_get(lis2mdl, temp); sum[0] += temp[0]; sum[1] += temp[1]; sum[2] += temp[2]; lis2mdl->delay_func(50); } magNom[0] = (float) sum[0] / 50.0f; magNom[1] = (float) sum[1] / 50.0f; magNom[2] = (float) sum[2] / 50.0f; lis2mdl_read_byte(LIS2MDL_CFG_REG_C, &c); lis2mdl_write_byte(LIS2MDL_CFG_REG_C, c | 0x02); // enable self test lis2mdl->delay_func(100); // let mag respond sum[0] = 0; sum[1] = 0; sum[2] = 0; for(int ii = 0; ii < 50; ii++) { lis2mdl_data_get(lis2mdl, temp); sum[0] += temp[0]; sum[1] += temp[1]; sum[2] += temp[2]; lis2mdl->delay_func(50); } magTest[0] = (float) sum[0] / 50.0f; magTest[1] = (float) sum[1] / 50.0f; magTest[2] = (float) sum[2] / 50.0f; lis2mdl_write_byte(LIS2MDL_CFG_REG_C, c); // return to previous settings/normal mode lis2mdl->delay_func(100); // let mag respond /* Serial.println("Mag Self Test:"); */ /* Serial.print("Mx results:"); */ /* Serial.print((magTest[0] - magNom[0]) * m_res * 1000.0); */ /* Serial.println(" mG"); */ /* Serial.print("My results:"); */ /* Serial.println((magTest[0] - magNom[0]) * m_res * 1000.0); */ /* Serial.print("Mz results:"); */ /* Serial.println((magTest[1] - magNom[1]) * m_res * 1000.0); */ /* Serial.println("Should be between 15 and 500 mG"); */ /* lis2mdl->delay_func(2000); // give some time to read the screen */ } #endif