/* 09/23/2017 Copyright Tlera Corporation Created by Kris Winer This sketch uses SDA/SCL on pins 21/20 (Butterfly default), respectively, and it uses the Butterfly STM32L433CU Breakout Board. The LSM6DSM is a sensor hub with embedded accel and gyro, here used as 6 DoF in a 9 DoF absolute orientation solution. Library may be used freely and without limit with attribution. */ #include "LSM6DSM.h" LSM6DSM::LSM6DSM(uint8_t intPin1, uint8_t intPin2, I2Cdev* i2c_bus) { _intPin1 = intPin1; _intPin2 = intPin2; _i2c_bus = i2c_bus; } uint8_t LSM6DSM::getChipID() { uint8_t c = _i2c_bus->readByte(LSM6DSM_ADDRESS, LSM6DSM_WHO_AM_I); return c; } float LSM6DSM::getAres(uint8_t Ascale) { switch (Ascale) { // Possible accelerometer scales (and their register bit settings) are: // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). // Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value: case AFS_2G: _aRes = 2.0f/32768.0f; return _aRes; break; case AFS_4G: _aRes = 4.0f/32768.0f; return _aRes; break; case AFS_8G: _aRes = 8.0f/32768.0f; return _aRes; break; case AFS_16G: _aRes = 16.0f/32768.0f; return _aRes; break; } } float LSM6DSM::getGres(uint8_t Gscale) { switch (Gscale) { // Possible gyro scales (and their register bit settings) are: // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). case GFS_245DPS: _gRes = 245.0f/32768.0f; return _gRes; break; case GFS_500DPS: _gRes = 500.0f/32768.0f; return _gRes; break; case GFS_1000DPS: _gRes = 1000.0f/32768.0f; return _gRes; break; case GFS_2000DPS: _gRes = 2000.0f/32768.0f; return _gRes; break; } } void LSM6DSM::reset() { // reset device uint8_t temp = _i2c_bus->readByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C); _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x01); // Set bit 0 to 1 to reset LSM6DSM delay(100); // Wait for all registers to reset } void LSM6DSM::init(uint8_t Ascale, uint8_t Gscale, uint8_t AODR, uint8_t GODR) { _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL1_XL, AODR << 4 | Ascale << 2); _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL2_G, GODR << 4 | Gscale << 2); uint8_t temp = _i2c_bus->readByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C); // enable block update (bit 6 = 1), auto-increment registers (bit 2 = 1) _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x40 | 0x04); // by default, interrupts active HIGH, push pull, little endian data // (can be changed by writing to bits 5, 4, and 1, resp to above register) // enable accel LP2 (bit 7 = 1), set LP2 tp ODR/9 (bit 6 = 1), enable input_composite (bit 3) for low noise _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL8_XL, 0x80 | 0x40 | 0x08 ); // interrupt handling _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_DRDY_PULSE_CFG, 0x80); // latch interrupt until data read _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_INT1_CTRL, 0x40); // enable significant motion interrupts on INT1 _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_INT2_CTRL, 0x03); // enable accel/gyro data ready interrupts on INT2 } void LSM6DSM::selfTest() { int16_t temp[7] = {0, 0, 0, 0, 0, 0, 0}; int16_t accelPTest[3] = {0, 0, 0}, accelNTest[3] = {0, 0, 0}, gyroPTest[3] = {0, 0, 0}, gyroNTest[3] = {0, 0, 0}; int16_t accelNom[3] = {0, 0, 0}, gyroNom[3] = {0, 0, 0}; readData(temp); accelNom[0] = temp[4]; accelNom[1] = temp[5]; accelNom[2] = temp[6]; gyroNom[0] = temp[1]; gyroNom[1] = temp[2]; gyroNom[2] = temp[3]; _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x01); // positive accel self test delay(100); // let accel respond readData(temp); accelPTest[0] = temp[4]; accelPTest[1] = temp[5]; accelPTest[2] = temp[6]; _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x03); // negative accel self test delay(100); // let accel respond readData(temp); accelNTest[0] = temp[4]; accelNTest[1] = temp[5]; accelNTest[2] = temp[6]; _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x04); // positive gyro self test delay(100); // let gyro respond readData(temp); gyroPTest[0] = temp[1]; gyroPTest[1] = temp[2]; gyroPTest[2] = temp[3]; _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x0C); // negative gyro self test delay(100); // let gyro respond readData(temp); gyroNTest[0] = temp[1]; gyroNTest[1] = temp[2]; gyroNTest[2] = temp[3]; _i2c_bus->writeByte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x00); // normal mode delay(100); // let accel and gyro respond Serial.println("Accel Self Test:"); Serial.print("+Ax results:"); Serial.print( (accelPTest[0] - accelNom[0]) * _aRes * 1000.0); Serial.println(" mg"); Serial.print("-Ax results:"); Serial.println((accelNTest[0] - accelNom[0]) * _aRes * 1000.0); Serial.print("+Ay results:"); Serial.println((accelPTest[1] - accelNom[1]) * _aRes * 1000.0); Serial.print("-Ay results:"); Serial.println((accelNTest[1] - accelNom[1]) * _aRes * 1000.0); Serial.print("+Az results:"); Serial.println((accelPTest[2] - accelNom[2]) * _aRes * 1000.0); Serial.print("-Az results:"); Serial.println((accelNTest[2] - accelNom[2]) * _aRes * 1000.0); Serial.println("Should be between 90 and 1700 mg"); Serial.println("Gyro Self Test:"); Serial.print("+Gx results:"); Serial.print((gyroPTest[0] - gyroNom[0]) * _gRes); Serial.println(" dps"); Serial.print("-Gx results:"); Serial.println((gyroNTest[0] - gyroNom[0]) * _gRes); Serial.print("+Gy results:"); Serial.println((gyroPTest[1] - gyroNom[1]) * _gRes); Serial.print("-Gy results:"); Serial.println((gyroNTest[1] - gyroNom[1]) * _gRes); Serial.print("+Gz results:"); Serial.println((gyroPTest[2] - gyroNom[2]) * _gRes); Serial.print("-Gz results:"); Serial.println((gyroNTest[2] - gyroNom[2]) * _gRes); Serial.println("Should be between 20 and 80 dps"); delay(2000); } void LSM6DSM::offsetBias(float * dest1, float * dest2) { int16_t temp[7] = {0, 0, 0, 0, 0, 0, 0}; int32_t sum[7] = {0, 0, 0, 0, 0, 0, 0}; Serial.println("Calculate accel and gyro offset biases: keep sensor flat and motionless!"); delay(4000); for (int ii = 0; ii < 128; ii++) { readData(temp); sum[1] += temp[1]; sum[2] += temp[2]; sum[3] += temp[3]; sum[4] += temp[4]; sum[5] += temp[5]; sum[6] += temp[6]; delay(50); } dest1[0] = sum[1]*_gRes/128.0f; dest1[1] = sum[2]*_gRes/128.0f; dest1[2] = sum[3]*_gRes/128.0f; dest2[0] = sum[4]*_aRes/128.0f; dest2[1] = sum[5]*_aRes/128.0f; dest2[2] = sum[6]*_aRes/128.0f; if(dest2[0] > 0.8f) {dest2[0] -= 1.0f;} // Remove gravity from the x-axis accelerometer bias calculation if(dest2[0] < -0.8f) {dest2[0] += 1.0f;} // Remove gravity from the x-axis accelerometer bias calculation if(dest2[1] > 0.8f) {dest2[1] -= 1.0f;} // Remove gravity from the y-axis accelerometer bias calculation if(dest2[1] < -0.8f) {dest2[1] += 1.0f;} // Remove gravity from the y-axis accelerometer bias calculation if(dest2[2] > 0.8f) {dest2[2] -= 1.0f;} // Remove gravity from the z-axis accelerometer bias calculation if(dest2[2] < -0.8f) {dest2[2] += 1.0f;} // Remove gravity from the z-axis accelerometer bias calculation } void LSM6DSM::readData(int16_t * destination) { uint8_t rawData[14]; // x/y/z accel register data stored here _i2c_bus->readBytes(LSM6DSM_ADDRESS, LSM6DSM_OUT_TEMP_L, 14, &rawData[0]); // Read the 14 raw data registers into data array destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; destination[3] = ((int16_t)rawData[7] << 8) | rawData[6] ; destination[4] = ((int16_t)rawData[9] << 8) | rawData[8] ; destination[5] = ((int16_t)rawData[11] << 8) | rawData[10] ; destination[6] = ((int16_t)rawData[13] << 8) | rawData[12] ; }