/* EM7180_MPU6500_AK8963C_BMP280_t3 Basic Example Code
 by: Kris Winer
 date: June 12, 2015
 license: Beerware - Use this code however you'd like. If you 
 find it useful you can buy me a beer some time.
 
 The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors,
 in this case the MPU6500 and AK8963C, and does sensor fusion with quaternions as its output. The SENtral loads firmware from the
 on-board M24512DFC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus,
 and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and
 heading/pitch/roll, if selected.
 
 This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor, 
 getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to 
 allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and 
 Mahony filter algorithms to compare with the hardware sensor fusion results.
 Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
 
 This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master,
 the MPU6500+AK8963C 9-axis motion sensor (accel/gyro/mag) as slave, an BMP280 pressure/temperature sensor, and an M24512DFC
 512kbit (64 kByte) EEPROM as slave all connected via I2C. The SENtral cannot use the pressure data in the sensor fusion
 yet but there is a driver for the BMP280 in the SENtral firmware. However, like the MAX21100, the SENtral
 can be toggled into a bypass mode where the pressure sensor (and EEPROM and MPU6500+AK8963C) may be read directly by the
 Teensy 3.1 host micrcontroller. If the read rate is infrequent enough (2 Hz is sufficient since pressure and temperature
 do not change very fast), then the sensor fusion rate is not significantly affected.
 
 This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h.
 The MS5637 is a simple but high resolution pressure sensor, which can be used in its high resolution
 mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
 only 1 microAmp. The choice will depend on the application.
 
 SDA and SCL should have external pull-up resistors (to 3.3V).
 4k7 resistors are on the EM7180+MPU6500+AK8963C+BMP280+M24512DFC Mini Add-On board for Teensy 3.1.
 
 Hardware setup:
 EM7180 Mini Add-On ------- Teensy 3.1
 VDD ---------------------- 3.3V
 SDA ----------------------- 17
 SCL ----------------------- 16
 GND ---------------------- GND
 INT------------------------ 8
 
 Note: All the sensors on this board are I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library. 
 Because the sensors are not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
 */
//#include "Wire.h"   
#include <i2c_t3.h>
#include <SPI.h>

// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in 
// above document; the MPU6500 and MPU9250 are virtually identical but the latter has a different register map
//
//Magnetometer Registers
#define AK8963_ADDRESS   0x0C
#define WHO_AM_I_AK8963  0x00 // should return 0x48
#define INFO             0x01
#define AK8963_ST1       0x02  // data ready status bit 0
#define AK8963_XOUT_L	 0x03  // data
#define AK8963_XOUT_H	 0x04
#define AK8963_YOUT_L	 0x05
#define AK8963_YOUT_H	 0x06
#define AK8963_ZOUT_L	 0x07
#define AK8963_ZOUT_H	 0x08
#define AK8963_ST2       0x09  // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL      0x0A  // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC      0x0C  // Self test control
#define AK8963_I2CDIS    0x0F  // I2C disable
#define AK8963_ASAX      0x10  // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY      0x11  // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ      0x12  // Fuse ROM z-axis sensitivity adjustment value

#define SELF_TEST_X_GYRO  0x00                  
#define SELF_TEST_Y_GYRO  0x01                                                                          
#define SELF_TEST_Z_GYRO  0x02
#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E    
#define SELF_TEST_Z_ACCEL 0x0F
#define XG_OFFSET_H       0x13  // User-defined trim values for gyroscope
#define XG_OFFSET_L       0x14
#define YG_OFFSET_H       0x15
#define YG_OFFSET_L       0x16
#define ZG_OFFSET_H       0x17
#define ZG_OFFSET_L       0x18
#define SMPLRT_DIV        0x19
#define CONFIG            0x1A
#define GYRO_CONFIG       0x1B
#define ACCEL_CONFIG      0x1C
#define ACCEL_CONFIG2     0x1D
#define LP_ACCEL_ODR      0x1E   
#define WOM_THR           0x1F   
#define FIFO_EN           0x23
#define I2C_MST_CTRL      0x24   
#define I2C_SLV0_ADDR     0x25
#define I2C_SLV0_REG      0x26
#define I2C_SLV0_CTRL     0x27
#define I2C_SLV1_ADDR     0x28
#define I2C_SLV1_REG      0x29
#define I2C_SLV1_CTRL     0x2A
#define I2C_SLV2_ADDR     0x2B
#define I2C_SLV2_REG      0x2C
#define I2C_SLV2_CTRL     0x2D
#define I2C_SLV3_ADDR     0x2E
#define I2C_SLV3_REG      0x2F
#define I2C_SLV3_CTRL     0x30
#define I2C_SLV4_ADDR     0x31
#define I2C_SLV4_REG      0x32
#define I2C_SLV4_DO       0x33
#define I2C_SLV4_CTRL     0x34
#define I2C_SLV4_DI       0x35
#define I2C_MST_STATUS    0x36
#define INT_PIN_CFG       0x37
#define INT_ENABLE        0x38
#define INT_STATUS        0x3A
#define ACCEL_XOUT_H      0x3B
#define ACCEL_XOUT_L      0x3C
#define ACCEL_YOUT_H      0x3D
#define ACCEL_YOUT_L      0x3E
#define ACCEL_ZOUT_H      0x3F
#define ACCEL_ZOUT_L      0x40
#define TEMP_OUT_H        0x41
#define TEMP_OUT_L        0x42
#define GYRO_XOUT_H       0x43
#define GYRO_XOUT_L       0x44
#define GYRO_YOUT_H       0x45
#define GYRO_YOUT_L       0x46
#define GYRO_ZOUT_H       0x47
#define GYRO_ZOUT_L       0x48
#define EXT_SENS_DATA_00  0x49
#define EXT_SENS_DATA_01  0x4A
#define EXT_SENS_DATA_02  0x4B
#define EXT_SENS_DATA_03  0x4C
#define EXT_SENS_DATA_04  0x4D
#define EXT_SENS_DATA_05  0x4E
#define EXT_SENS_DATA_06  0x4F
#define EXT_SENS_DATA_07  0x50
#define EXT_SENS_DATA_08  0x51
#define EXT_SENS_DATA_09  0x52
#define EXT_SENS_DATA_10  0x53
#define EXT_SENS_DATA_11  0x54
#define EXT_SENS_DATA_12  0x55
#define EXT_SENS_DATA_13  0x56
#define EXT_SENS_DATA_14  0x57
#define EXT_SENS_DATA_15  0x58
#define EXT_SENS_DATA_16  0x59
#define EXT_SENS_DATA_17  0x5A
#define EXT_SENS_DATA_18  0x5B
#define EXT_SENS_DATA_19  0x5C
#define EXT_SENS_DATA_20  0x5D
#define EXT_SENS_DATA_21  0x5E
#define EXT_SENS_DATA_22  0x5F
#define EXT_SENS_DATA_23  0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO       0x63
#define I2C_SLV1_DO       0x64
#define I2C_SLV2_DO       0x65
#define I2C_SLV3_DO       0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET  0x68
#define ACCEL_DETECT_CTRL  0x69
#define USER_CTRL         0x6A  // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1        0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2        0x6C
#define FIFO_COUNTH       0x72
#define FIFO_COUNTL       0x73
#define FIFO_R_W          0x74
#define WHO_AM_I_MPU6500  0x75 // Should return 0x70
#define XA_OFFSET_H       0x77
#define XA_OFFSET_L       0x78
#define YA_OFFSET_H       0x7A
#define YA_OFFSET_L       0x7B
#define ZA_OFFSET_H       0x7D
#define ZA_OFFSET_L       0x7E

// BMP280 registers
#define BMP280_TEMP_XLSB  0xFC
#define BMP280_TEMP_LSB   0xFB
#define BMP280_TEMP_MSB   0xFA
#define BMP280_PRESS_XLSB 0xF9
#define BMP280_PRESS_LSB  0xF8
#define BMP280_PRESS_MSB  0xF7
#define BMP280_CONFIG     0xF5
#define BMP280_CTRL_MEAS  0xF4
#define BMP280_STATUS     0xF3
#define BMP280_RESET      0xE0
#define BMP280_ID         0xD0  // should be 0x58
#define BMP280_CALIB00    0x88

// EM7180 SENtral register map
// see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf
//
#define EM7180_QX                 0x00  // this is a 32-bit normalized floating point number read from registers 0x00-03
#define EM7180_QY                 0x04  // this is a 32-bit normalized floating point number read from registers 0x04-07
#define EM7180_QZ                 0x08  // this is a 32-bit normalized floating point number read from registers 0x08-0B
#define EM7180_QW                 0x0C  // this is a 32-bit normalized floating point number read from registers 0x0C-0F
#define EM7180_QTIME              0x10  // this is a 16-bit unsigned integer read from registers 0x10-11
#define EM7180_MX                 0x12  // int16_t from registers 0x12-13
#define EM7180_MY                 0x14  // int16_t from registers 0x14-15
#define EM7180_MZ                 0x16  // int16_t from registers 0x16-17
#define EM7180_MTIME              0x18  // uint16_t from registers 0x18-19
#define EM7180_AX                 0x1A  // int16_t from registers 0x1A-1B
#define EM7180_AY                 0x1C  // int16_t from registers 0x1C-1D
#define EM7180_AZ                 0x1E  // int16_t from registers 0x1E-1F
#define EM7180_ATIME              0x20  // uint16_t from registers 0x20-21
#define EM7180_GX                 0x22  // int16_t from registers 0x22-23
#define EM7180_GY                 0x24  // int16_t from registers 0x24-25
#define EM7180_GZ                 0x26  // int16_t from registers 0x26-27
#define EM7180_GTIME              0x28  // uint16_t from registers 0x28-29
#define EM7180_QRateDivisor       0x32  // uint8_t 
#define EM7180_EnableEvents       0x33
#define EM7180_HostControl        0x34
#define EM7180_EventStatus        0x35
#define EM7180_SensorStatus       0x36
#define EM7180_SentralStatus      0x37
#define EM7180_AlgorithmStatus    0x38
#define EM7180_FeatureFlags       0x39
#define EM7180_ParamAcknowledge   0x3A
#define EM7180_SavedParamByte0    0x3B
#define EM7180_SavedParamByte1    0x3C
#define EM7180_SavedParamByte2    0x3D
#define EM7180_SavedParamByte3    0x3E
#define EM7180_ActualMagRate      0x45
#define EM7180_ActualAccelRate    0x46
#define EM7180_ActualGyroRate     0x47
#define EM7180_ErrorRegister      0x50
#define EM7180_AlgorithmControl   0x54
#define EM7180_MagRate            0x55
#define EM7180_AccelRate          0x56
#define EM7180_GyroRate           0x57
#define EM7180_LoadParamByte0     0x60
#define EM7180_LoadParamByte1     0x61
#define EM7180_LoadParamByte2     0x62
#define EM7180_LoadParamByte3     0x63
#define EM7180_ParamRequest       0x64
#define EM7180_ROMVersion1        0x70
#define EM7180_ROMVersion2        0x71
#define EM7180_RAMVersion1        0x72
#define EM7180_RAMVersion2        0x73
#define EM7180_ProductID          0x90
#define EM7180_RevisionID         0x91
#define EM7180_RunStatus          0x92
#define EM7180_UploadAddress      0x94 // uint16_t registers 0x94 (MSB)-5(LSB)
#define EM7180_UploadData         0x96  
#define EM7180_CRCHost            0x97  // uint32_t from registers 0x97-9A
#define EM7180_ResetRequest       0x9B   
#define EM7180_PassThruStatus     0x9E   
#define EM7180_PassThruControl    0xA0

// Using the Teensy Mini Add-On board, BMX055 SDO1 = SDO2 = CSB3 = GND as designed
// Seven-bit BMX055 device addresses are ACC = 0x18, GYRO = 0x68, MAG = 0x10
#define EM7180_ADDRESS      0x28   // Address of the EM7180 SENtral sensor hub
#define M24512DFM_DATA_ADDRESS   0x50   // Address of the 500 page M24512DFM EEPROM data buffer, 1024 bits (128 8-bit bytes) per page
#define M24512DFM_IDPAGE_ADDRESS 0x58   // Address of the single M24512DFM lockable EEPROM ID page
#define MPU6500_ADDRESS 0x68  // Device address when ADO = 0
#define AK8963_ADDRESS 0x0C   //  Address of magnetometer
#define BMP280_ADDRESS 0x76   // Address of altimeter

#define SerialDebug true  // set to true to get Serial output for debugging

// Set initial input parameters
enum Ascale {
  AFS_2G = 0,
  AFS_4G,
  AFS_8G,
  AFS_16G
};

enum Gscale {
  GFS_250DPS = 0,
  GFS_500DPS,
  GFS_1000DPS,
  GFS_2000DPS
};

enum Mscale {
  MFS_14BITS = 0, // 0.6 mG per LSB
  MFS_16BITS      // 0.15 mG per LSB
};

enum Posr {
  P_OSR_00 = 0,  // no op
  P_OSR_01,
  P_OSR_02,
  P_OSR_04,
  P_OSR_08,
  P_OSR_16
};

enum Tosr {
  T_OSR_00 = 0,  // no op
  T_OSR_01,
  T_OSR_02,
  T_OSR_04,
  T_OSR_08,
  T_OSR_16
};

enum IIRFilter {
  full = 0,  // bandwidth at full sample rate
  BW0_223ODR,
  BW0_092ODR,
  BW0_042ODR,
  BW0_021ODR // bandwidth at 0.021 x sample rate
};

enum Mode {
  BMP280Sleep = 0,
  forced,
  forced2,
  normal
};

enum SBy {
  t_00_5ms = 0,
  t_62_5ms,
  t_125ms,
  t_250ms,
  t_500ms,
  t_1000ms,
  t_2000ms,
  t_4000ms,
};

// Specify BMP280 configuration
uint8_t Posr = P_OSR_16, Tosr = T_OSR_02, Mode = normal, IIRFilter = BW0_042ODR, SBy = t_62_5ms;     // set pressure amd temperature output data rate
// t_fine carries fine temperature as global value for BMP280
int32_t t_fine;
//
// Specify sensor full scale
uint8_t Gscale = GFS_250DPS;
uint8_t Ascale = AFS_2G;
uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit magnetometer resolution
uint8_t Mmode = 0x02;        // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
float aRes, gRes, mRes;            // scale resolutions per LSB for the sensors

// Pin definitions
int myLed     = 13;  // LED on the Teensy 3.1

// BMP280 definitions
double Temperature, Pressure;        // stores BMP280 pressures sensor pressure and temperature
int32_t rawPress, rawTemp;   // pressure and temperature raw count output for BMP280

// BMX055 variables
int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
int16_t magCount[3];    // Stores the 16-bit signed magnetometer sensor output
float Quat[4] = {0, 0, 0, 0}; // quaternion data register
float magCalibration[3] = {0, 0, 0};  // Factory mag calibration and mag bias
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0};  // Bias corrections for gyro, accelerometer, mag
int16_t tempCount;            // temperature raw count output
float   temperature;          // Stores the BMX055 internal chip temperature in degrees Celsius
float SelfTest[6];            // holds results of gyro and accelerometer self test

// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f);   // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f  / 180.0f);   // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense; 
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy. 
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError;   // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift;   // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f

uint32_t delt_t = 0, count = 0, sumCount = 0;  // used to control display output rate
float pitch, yaw, roll, Yaw, Pitch, Roll;
float deltat = 0.0f, sum = 0.0f;          // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0;                         // used to calculate integration interval
uint8_t param[4];                         // used for param transfer
uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges

float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values 
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f};    // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f};       // vector to hold integral error for Mahony method

// BMP280 compensation parameters
uint16_t dig_T1, dig_P1;
int16_t  dig_T2, dig_T3, dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9;

bool passThru = false;

;

void setup()
{
//  Wire.begin();
//  TWBR = 12;  // 400 kbit/sec I2C speed for Pro Mini
  // Setup for Master mode, pins 18/19, external pullups, 400kHz for Teensy 3.1
  Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400);
  delay(5000);
  Serial.begin(38400);

  I2Cscan(); // should detect SENtral at 0x28
  
  // Read SENtral device information
  uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1);
  uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2);
  Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609");
  uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1);
  uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2);
  Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2);
  uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID);
  Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80");
  uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID);
  Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02");
  
  delay(1000); // give some time to read the screen

  // Check SENtral status, make sure EEPROM upload of firmware was accomplished
  byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01)  Serial.println("EEPROM detected on the sensor bus!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02)  Serial.println("EEPROM uploaded config file!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)  Serial.println("EEPROM CRC incorrect!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08)  Serial.println("EM7180 in initialized state!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10)  Serial.println("No EEPROM detected!");
  int count = 0;
  while(!STAT) {
    writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01);
    delay(500);  
    count++;  
    STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01)  Serial.println("EEPROM detected on the sensor bus!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02)  Serial.println("EEPROM uploaded config file!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)  Serial.println("EEPROM CRC incorrect!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08)  Serial.println("EM7180 in initialized state!");
    if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10)  Serial.println("No EEPROM detected!");
    if(count > 10) break;
  }
  
   if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04))  Serial.println("EEPROM upload successful!");
   delay(1000); // give some time to read the screen
    
  // Set up the SENtral as sensor bus in normal operating mode
if(!passThru) {
// Enter EM7180 initialized state
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off
// Set accel/gyro/mage desired ODR rates
writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 100 Hz
writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x1E); // 30 Hz
writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x0A); // 100/10 Hz
writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x14); // 200/10 Hz

// Configure operating mode
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data

// Enable interrupt to host upon certain events
// choose interrupts when quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07);

// Enable EM7180 run mode
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode
delay(100);

// EM7180 parameter adjustments
  Serial.println("Beginning Parameter Adjustments");
  
  // Read sensor default FS values from parameter space
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process
  byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  while(!(param_xfer==0x4A)) {
    param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
  param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
  param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
  param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
  EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]);
  EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]);
  Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT");
  Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g");
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read  parameter 75
  param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  while(!(param_xfer==0x4B)) {
    param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
  param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
  param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
  param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
  EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]);
  Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps");
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm
  
  //Disable stillness mode
  EM7180_set_integer_param (0x49, 0x00);
  
  //Write desired sensor full scale ranges to the EM7180
  EM7180_set_mag_acc_FS (0x3E8, 0x08); // 1000 uT, 8 g
  EM7180_set_gyro_FS (0x7D0); // 2000 dps
  
  // Read sensor new FS values from parameter space
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read  parameter 74
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process
  param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  while(!(param_xfer==0x4A)) {
    param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
  param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
  param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
  param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
  EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]);
  EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]);
  Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT");
  Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g");
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read  parameter 75
  param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  while(!(param_xfer==0x4B)) {
    param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
  param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
  param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
  param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
  EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]);
  Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps");
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm
  

// Read EM7180 status
uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus);
if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode");
uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
if(algoStatus & 0x01) Serial.println(" EM7180 standby status");
if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow");
if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode");
if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed");
if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected");
if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data");
uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!");
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus);
if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset");
if(eventStatus & 0x02) Serial.println(" EM7180 Error");
if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result");
if(eventStatus & 0x08) Serial.println(" EM7180 new mag result");
if(eventStatus & 0x10) Serial.println(" EM7180 new accel result");
if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); 
  
  delay(1000); // give some time to read the screen
  
  // Check sensor status
  uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus);
  Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus);
  if(sensorStatus & 0x01) Serial.println("Magnetometer not acknowledging!");
  if(sensorStatus & 0x02) Serial.println("Accelerometer not acknowledging!");
  if(sensorStatus & 0x04) Serial.println("Gyro not acknowledging!");
  if(sensorStatus & 0x10) Serial.println("Magnetometer ID not recognized!");
  if(sensorStatus & 0x20) Serial.println("Accelerometer ID not recognized!");
  if(sensorStatus & 0x40) Serial.println("Gyro ID not recognized!");
  
  Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz"); 
  Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz"); 
  Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz"); 

  delay(1000); // give some time to read the screen
   
  }
 
  // If pass through mode desired, set it up here
  if(passThru) {
 // Put EM7180 SENtral into pass-through mode
  SENtralPassThroughMode();
  delay(1000);
  
  I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages)
 
// Read first page of EEPROM
   uint8_t data[128];
   M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data);
   Serial.println("EEPROM Signature Byte"); 
   Serial.print(data[0], HEX); Serial.println("  Should be 0x2A");
   Serial.print(data[1], HEX); Serial.println("  Should be 0x65");
   for (int i = 0; i < 128; i++) {
     Serial.print(data[i], HEX); Serial.print(" ");
   }

  // Set up the interrupt pin, its set as active high, push-pull
  pinMode(myLed, OUTPUT);
  digitalWrite(myLed, HIGH);

  // Read the WHO_AM_I register, this is a good test of communication
  Serial.println("MPU6500 9-axis motion sensor...");
  byte c = readByte(MPU6500_ADDRESS, WHO_AM_I_MPU6500);  // Read WHO_AM_I register for MPU-9250
  Serial.print("MPU6500 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x70, HEX);
  writeByte(MPU6500_ADDRESS, INT_PIN_CFG, 0x22); 
 
  delay(1000); 
  
  // Read the WHO_AM_I register of the magnetometer, this is a good test of communication
  byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963);  // Read WHO_AM_I register for AK8963
  Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);

  delay(1000); 
  
  // Read the WHO_AM_I register of the BMP280 this is a good test of communication
  byte f = readByte(BMP280_ADDRESS, BMP280_ID);  // Read WHO_AM_I register for BMP280
  Serial.print("BMP280 "); 
  Serial.print("I AM "); 
  Serial.print(f, HEX); 
  Serial.print(" I should be "); 
  Serial.println(0x58, HEX);
  Serial.println(" ");

  if ((c == 0x70) && (d == 0x48) && f == 0x58 ) // WHO_AM_I should always be ACC/GYRO = 0x68, MAG = 0x48, ALTIMETER = 0x58
  {  
  Serial.println("MPU6500+AK8963C+BMP280 are online...");

  delay(1000); 

   MPU6500SelfTest(SelfTest); // Start by performing self test and reporting values
    Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
    Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
    Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
    Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
    Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
    Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
    delay(1000);
 
   
  // get sensor resolutions, only need to do this once
   getAres();
   getGres();
   getMres();

   delay(1000); 
   
   Serial.println(" Calibrate gyro and accel");
   accelgyrocalMPU6500(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
   Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
   Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);

   initMPU6500(); 
   Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
  
   
  // Get magnetometer calibration from AK8963 ROM
   initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer
   if(SerialDebug) {
//  Serial.println("Calibration values: ");
   Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
   Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
   Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);
  }
  
   magcalMPU6500(magBias);
   Serial.println("mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]); 
   delay(2000); // add delay to see results before serial spew of data
   
   
  writeByte(BMP280_ADDRESS, BMP280_RESET, 0xB6); // reset BMP280 before initilization
  delay(100);

  BMP280Init(); // Initialize BMP280 altimeter
  Serial.println("Calibration coeficients:");
  Serial.print("dig_T1 ="); 
  Serial.println(dig_T1);
  Serial.print("dig_T2 ="); 
  Serial.println(dig_T2);
  Serial.print("dig_T3 ="); 
  Serial.println(dig_T3);
  Serial.print("dig_P1 ="); 
  Serial.println(dig_P1);
  Serial.print("dig_P2 ="); 
  Serial.println(dig_P2);
  Serial.print("dig_P3 ="); 
  Serial.println(dig_P3);
  Serial.print("dig_P4 ="); 
  Serial.println(dig_P4);
  Serial.print("dig_P5 ="); 
  Serial.println(dig_P5);
  Serial.print("dig_P6 ="); 
  Serial.println(dig_P6);
  Serial.print("dig_P7 ="); 
  Serial.println(dig_P7);
  Serial.print("dig_P8 ="); 
  Serial.println(dig_P8);
  Serial.print("dig_P9 ="); 
  Serial.println(dig_P9);
  
  
  }
  else
  {
    Serial.print("Could not connect to MPU6500: 0x");
    Serial.println(c, HEX);
    while(1) ; // Loop forever if communication doesn't happen
  }
}
}


void loop()
{  
  if(!passThru) {
    
  // Check event status register, way to chech data ready by polling rather than interrupt
  uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register
  
   // Check for errors
  if(eventStatus & 0x02) { // error detected, what is it?
  
  uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister);
  if(!errorStatus) {
  Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus);
if(errorStatus == 0x11) Serial.print("Magnetometer failure!");
  if(errorStatus == 0x12) Serial.print("Accelerometer failure!");
  if(errorStatus == 0x14) Serial.print("Gyro failure!");
  if(errorStatus == 0x21) Serial.print("Magnetometer initialization failure!");
  if(errorStatus == 0x22) Serial.print("Accelerometer initialization failure!");
  if(errorStatus == 0x24) Serial.print("Gyro initialization failure!");
  if(errorStatus == 0x30) Serial.print("Math error!");
  if(errorStatus == 0x80) Serial.print("Invalid sample rate!");
   }
  
  // Handle errors ToDo
  
  }
 
 // if no errors, see if new data is ready
  if(eventStatus & 0x10) { // new acceleration data available
     readSENtralAccelData(accelCount);
  
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*0.000488;  // get actual g value
    ay = (float)accelCount[1]*0.000488;    
    az = (float)accelCount[2]*0.000488;  
  }
  
   if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x20) { // new gyro data available
    readSENtralGyroData(gyroCount);
  
    // Now we'll calculate the gyro value into actual dps's
    gx = (float)gyroCount[0]*0.153;  // get actual dps value
    gy = (float)gyroCount[1]*0.153;    
    gz = (float)gyroCount[2]*0.153;  
   }

  if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x08) { // new mag data available
    readSENtralMagData(magCount);
  
    // Now we'll calculate the mag value into actual G's
    mx = (float)magCount[0]*0.305176;  // get actual G value
    my = (float)magCount[1]*0.305176;    
    mz = (float)magCount[2]*0.305176;  
   }
   
    if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x04) { // new quaternion data available
    readSENtralQuatData(Quat); 
   }
  }
 
  if(passThru) {
  // If intPin goes high, all data registers have new data
//  if (digitalRead(intACC2)) {  // On interrupt, read data
    readAccelData(accelCount);  // Read the x/y/z adc values
 
    // Now we'll calculate the accleration value into actual g's
    ax = (float)accelCount[0]*aRes; // + accelBias[0];  // get actual g value, this depends on scale being set
    ay = (float)accelCount[1]*aRes; // + accelBias[1];   
    az = (float)accelCount[2]*aRes; // + accelBias[2]; 
 // } 
//  if (digitalRead(intGYRO2)) {  // On interrupt, read data
    readGyroData(gyroCount);  // Read the x/y/z adc values

    // Calculate the gyro value into actual degrees per second
    gx = (float)gyroCount[0]*gRes;  // get actual gyro value, this depends on scale being set
    gy = (float)gyroCount[1]*gRes;  
    gz = (float)gyroCount[2]*gRes;   
 // }
//  if (digitalRead(intDRDYM)) {  // On interrupt, read data
    readMagData(magCount);  // Read the x/y/z adc values
    
    // Calculate the magnetometer values in milliGauss
    // Temperature-compensated magnetic field is in 16 LSB/microTesla
    mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0];  // get actual magnetometer value, this depends on scale being set
    my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];  
    mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2]; 
 //   }
  } 
 
 
 // keep track of rates
  Now = micros();
  deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
  lastUpdate = Now;

  // Check to make sure the EM7180 is running properly
 // uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus);
 // if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset");
 // if(eventStatus & 0x02) Serial.println(" EM7180 Error");
//  if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result");
 // if(eventStatus & 0x08) Serial.println(" EM7180 new mag result");
 // if(eventStatus & 0x10) Serial.println(" EM7180 new accel result");
 // if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result"); 


  sum += deltat; // sum for averaging filter update rate
  sumCount++;
  
  // Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer;
  // the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro!
  // We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
  // For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
  // in the MPU6500 sensor. This rotation can be modified to allow any convenient orientation convention.
  // This is ok by aircraft orientation standards!  
  // Pass gyro rate as rad/s
    MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  mx,  my, mz);
//  if(passThru)MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, -my, mx, mz);

    // Serial print and/or display at 0.5 s rate independent of data rates
    delt_t = millis() - count;
    if (delt_t > 500) { // update LCD once per half-second independent of read rate

    if(SerialDebug) {
    Serial.print("ax = "); Serial.print((int)1000*ax);  
    Serial.print(" ay = "); Serial.print((int)1000*ay); 
    Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
    Serial.print("gx = "); Serial.print( gx, 2); 
    Serial.print(" gy = "); Serial.print( gy, 2); 
    Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
    Serial.print("mx = "); Serial.print( (int)mx); 
    Serial.print(" my = "); Serial.print( (int)my); 
    Serial.print(" mz = "); Serial.print( (int)mz); Serial.println(" mG");
    
    Serial.println("Software quaternions:"); 
    Serial.print("q0 = "); Serial.print(q[0]);
    Serial.print(" qx = "); Serial.print(q[1]); 
    Serial.print(" qy = "); Serial.print(q[2]); 
    Serial.print(" qz = "); Serial.println(q[3]); 
    Serial.println("Hardware quaternions:"); 
    Serial.print("Q0 = "); Serial.print(Quat[0]);
    Serial.print(" Qx = "); Serial.print(Quat[1]); 
    Serial.print(" Qy = "); Serial.print(Quat[2]); 
    Serial.print(" Qz = "); Serial.println(Quat[3]); 
    }               
 

// tempCount = readTempData();  // Read the gyro adc values
//    temperature = ((float) tempCount) / 333.87 + 21.0; // Gyro chip temperature in degrees Centigrade
   // Print temperature in degrees Centigrade      
//    Serial.print("Gyro temperature is ");  Serial.print(temperature, 1);  Serial.println(" degrees C"); // Print T values to tenths of s degree C
   if(passThru) {
    rawPress =  readBMP280Pressure();
    Pressure = (float) bmp280_compensate_P(rawPress)/25600.; // Pressure in mbar
    rawTemp =   readBMP280Temperature();
    Temperature = (float) bmp280_compensate_T(rawTemp)/100.;

    float altitude = 145366.45f*(1.0f - pow((Pressure/1013.25f), 0.190284f));

    if(SerialDebug) {
      Serial.println("BMP280:");
      Serial.print("Altimeter temperature = "); 
      Serial.print( Temperature, 2); 
      Serial.println(" C"); // temperature in degrees Celsius
      Serial.print("Altimeter temperature = "); 
      Serial.print(9.*Temperature/5. + 32., 2); 
      Serial.println(" F"); // temperature in degrees Fahrenheit
      Serial.print("Altimeter pressure = "); 
      Serial.print(Pressure, 2);  
      Serial.println(" mbar");// pressure in millibar
      Serial.print("Altitude = "); 
      Serial.print(altitude, 2); 
      Serial.println(" feet");
      Serial.println(" ");
    }
    
   }
   
    
  // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
  // In this coordinate system, the positive z-axis is down toward Earth. 
  // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
  // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
  // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
  // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
  // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
  // applied in the correct order which for this configuration is yaw, pitch, and then roll.
  // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
    //Software AHRS:
    yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
    pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
    roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
    pitch *= 180.0f / PI;
    yaw   *= 180.0f / PI; 
    yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
    roll  *= 180.0f / PI;
    //Hardware AHRS:
    Yaw   = atan2(2.0f * (Quat[1] * Quat[2] + Quat[0] * Quat[3]), Quat[0] * Quat[0] + Quat[1] * Quat[1] - Quat[2] * Quat[2] - Quat[3] * Quat[3]);   
    Pitch = -asin(2.0f * (Quat[1] * Quat[3] - Quat[0] * Quat[2]));
    Roll  = atan2(2.0f * (Quat[0] * Quat[1] + Quat[2] * Quat[3]), Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2] + Quat[3] * Quat[3]);
    Pitch *= 180.0f / PI;
    Yaw   *= 180.0f / PI; 
    Yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
    Roll  *= 180.0f / PI;
     
    // Or define output variable according to the Android system, where heading (0 to 260) is defined by the angle between the y-axis 
    // and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90)
    // In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis
    // points toward the right of the device.
    //
    
    if(SerialDebug) {
    Serial.print("Software yaw, pitch, roll: ");
    Serial.print(yaw, 2);
    Serial.print(", ");
    Serial.print(pitch, 2);
    Serial.print(", ");
    Serial.println(roll, 2);

    Serial.print("Hardware Yaw, Pitch, Roll: ");
    Serial.print(Yaw, 2);
    Serial.print(", ");
    Serial.print(Pitch, 2);
    Serial.print(", ");
    Serial.println(Roll, 2);
    
    Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
    }
 
    digitalWrite(myLed, !digitalRead(myLed));
    count = millis(); 
    sumCount = 0;
    sum = 0;    
    }

}

//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================

float uint32_reg_to_float (uint8_t *buf)
{
  union {
    uint32_t ui32;
    float f;
  } u;

  u.ui32 =     (((uint32_t)buf[0]) +
               (((uint32_t)buf[1]) <<  8) +
               (((uint32_t)buf[2]) << 16) +
               (((uint32_t)buf[3]) << 24));
  return u.f;
}

void float_to_bytes (float param_val, uint8_t *buf) {
  union {
    float f;
    uint8_t comp[sizeof(float)];
  } u;
  u.f = param_val;
  for (uint8_t i=0; i < sizeof(float); i++) {
    buf[i] = u.comp[i];
  }
  //Convert to LITTLE ENDIAN
  for (uint8_t i=0; i < sizeof(float); i++) {
    buf[i] = buf[(sizeof(float)-1) - i];
  }
}


void readSENtralQuatData(float * destination)
{
  uint8_t rawData[16];  // x/y/z quaternion register data stored here
  readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]);       // Read the sixteen raw data registers into data array
  destination[1] = uint32_reg_to_float (&rawData[0]);
  destination[2] = uint32_reg_to_float (&rawData[4]);
  destination[3] = uint32_reg_to_float (&rawData[8]);
  destination[0] = uint32_reg_to_float (&rawData[12]);  // SENtral stores quats as qx, qy, qz, q0!

}

void readSENtralAccelData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z accel register data stored here
  readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]);       // Read the six raw data registers into data array
  destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);  
  destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); 
}

void readSENtralGyroData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z gyro register data stored here
  readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);   // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);  
  destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); 
}

void readSENtralMagData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z gyro register data stored here
  readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]);   // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);  
  destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]); 
}

void getMres() {
  switch (Mscale)
  {
 	// Possible magnetometer scales (and their register bit settings) are:
	// 14 bit resolution (0) and 16 bit resolution (1)
    case MFS_14BITS:
          mRes = 10.*4219./8190.; // Proper scale to return milliGauss
          break;
    case MFS_16BITS:
          mRes = 10.*4219./32760.0; // Proper scale to return milliGauss
          break;
  }
}

void getGres() {
  switch (Gscale)
  {
 	// Possible gyro scales (and their register bit settings) are:
	// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
    case GFS_250DPS:
          gRes = 250.0/32768.0;
          break;
    case GFS_500DPS:
          gRes = 500.0/32768.0;
          break;
    case GFS_1000DPS:
          gRes = 1000.0/32768.0;
          break;
    case GFS_2000DPS:
          gRes = 2000.0/32768.0;
          break;
  }
}

void getAres() {
  switch (Ascale)
  {
 	// Possible accelerometer scales (and their register bit settings) are:
	// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
    case AFS_2G:
          aRes = 2.0/32768.0;
          break;
    case AFS_4G:
          aRes = 4.0/32768.0;
          break;
    case AFS_8G:
          aRes = 8.0/32768.0;
          break;
    case AFS_16G:
          aRes = 16.0/32768.0;
          break;
  }
}


void readAccelData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z accel register data stored here
  readBytes(MPU6500_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;  
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
}


void readGyroData(int16_t * destination)
{
  uint8_t rawData[6];  // x/y/z gyro register data stored here
  readBytes(MPU6500_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a signed 16-bit value
  destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;  
  destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ; 
}

void readMagData(int16_t * destination)
{
  uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
  if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
  readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
  uint8_t c = rawData[6]; // End data read by reading ST2 register
    if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
    destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ;  // Turn the MSB and LSB into a signed 16-bit value
    destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;  // Data stored as little Endian
    destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; 
   }
  }
}

int16_t readTempData()
{
  uint8_t rawData[2];  // x/y/z gyro register data stored here
  readBytes(MPU6500_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
  return ((int16_t)rawData[0] << 8) | rawData[1] ;  // Turn the MSB and LSB into a 16-bit value
}
       
void initAK8963(float * destination)
{
  // First extract the factory calibration for each magnetometer axis
  uint8_t rawData[3];  // x/y/z gyro calibration data stored here
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
  delay(20);
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
  delay(20);
  readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
  destination[0] =  (float)(rawData[0] - 128)/256. + 1.;   // Return x-axis sensitivity adjustment values, etc.
  destination[1] =  (float)(rawData[1] - 128)/256. + 1.;  
  destination[2] =  (float)(rawData[2] - 128)/256. + 1.; 
  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
  delay(20);
  // Configure the magnetometer for continuous read and highest resolution
  // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
  // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
  writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
  delay(20);
}


void initMPU6500()
{  
 // wake up device
  writeByte(MPU6500_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
  delay(100); // Wait for all registers to reset 

 // get stable time source
  writeByte(MPU6500_ADDRESS, PWR_MGMT_1, 0x01);  // Auto select clock source to be PLL gyroscope reference if ready else
  delay(200); 
  
 // Configure Gyro and Thermometer
 // Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively; 
 // minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
 // be higher than 1 / 0.0059 = 170 Hz
 // DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
 // With the MPU6500, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
  writeByte(MPU6500_ADDRESS, CONFIG, 0x03);  

 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
  writeByte(MPU6500_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; a rate consistent with the filter update rate 
                                    // determined inset in CONFIG above
 
// Set gyroscope full scale range
 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
  uint8_t c = readByte(MPU6500_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
 // c = c & ~0xE0; // Clear self-test bits [7:5] 
  c = c & ~0x02; // Clear Fchoice bits [1:0] 
  c = c & ~0x18; // Clear AFS bits [4:3]
  c = c | Gscale << 3; // Set full scale range for the gyro
 // c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
  writeByte(MPU6500_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
  
 // Set accelerometer full-scale range configuration
  c = readByte(MPU6500_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
 // c = c & ~0xE0; // Clear self-test bits [7:5] 
  c = c & ~0x18;  // Clear AFS bits [4:3]
  c = c | Ascale << 3; // Set full scale range for the accelerometer 
  writeByte(MPU6500_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value

 // Set accelerometer sample rate configuration
 // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
 // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
  c = readByte(MPU6500_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
  c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
  c = c | 0x03;  // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
  writeByte(MPU6500_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value

 // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
 // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting

  // Configure Interrupts and Bypass Enable
  // Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
  // clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips 
  // can join the I2C bus and all can be controlled by the Arduino as master
   writeByte(MPU6500_ADDRESS, INT_PIN_CFG, 0x22);    
   writeByte(MPU6500_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
   delay(100);
}


// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void accelgyrocalMPU6500(float * dest1, float * dest2)
{  
  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
  uint16_t ii, packet_count, fifo_count;
  int32_t gyro_bias[3]  = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
  
 // reset device
  writeByte(MPU6500_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
  delay(100);
   
 // get stable time source; Auto select clock source to be PLL gyroscope reference if ready 
 // else use the internal oscillator, bits 2:0 = 001
  writeByte(MPU6500_ADDRESS, PWR_MGMT_1, 0x01);  
  writeByte(MPU6500_ADDRESS, PWR_MGMT_2, 0x00);
  delay(200);                                    

// Configure device for bias calculation
  writeByte(MPU6500_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
  writeByte(MPU6500_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
  writeByte(MPU6500_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
  writeByte(MPU6500_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
  writeByte(MPU6500_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
  writeByte(MPU6500_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
  delay(15);
  
// Configure MPU6050 gyro and accelerometer for bias calculation
  writeByte(MPU6500_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
  writeByte(MPU6500_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
  writeByte(MPU6500_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
  writeByte(MPU6500_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
 
  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g

// Configure FIFO to capture accelerometer and gyro data for bias calculation
  writeByte(MPU6500_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
  writeByte(MPU6500_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO  (max size 512 bytes in MPU-9150)
  delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes

// At end of sample accumulation, turn off FIFO sensor read
  writeByte(MPU6500_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
  readBytes(MPU6500_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
  fifo_count = ((uint16_t)data[0] << 8) | data[1];
  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
  
  for (ii = 0; ii < packet_count; ii++) {
    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
    readBytes(MPU6500_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
    
    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
    accel_bias[1] += (int32_t) accel_temp[1];
    accel_bias[2] += (int32_t) accel_temp[2];
    gyro_bias[0]  += (int32_t) gyro_temp[0];
    gyro_bias[1]  += (int32_t) gyro_temp[1];
    gyro_bias[2]  += (int32_t) gyro_temp[2];
            
}
    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
    accel_bias[1] /= (int32_t) packet_count;
    accel_bias[2] /= (int32_t) packet_count;
    gyro_bias[0]  /= (int32_t) packet_count;
    gyro_bias[1]  /= (int32_t) packet_count;
    gyro_bias[2]  /= (int32_t) packet_count;
    
  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
  else {accel_bias[2] += (int32_t) accelsensitivity;}
   
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
  data[3] = (-gyro_bias[1]/4)       & 0xFF;
  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
  data[5] = (-gyro_bias[2]/4)       & 0xFF;
  
// Push gyro biases to hardware registers
  writeByte(MPU6500_ADDRESS, XG_OFFSET_H, data[0]);
  writeByte(MPU6500_ADDRESS, XG_OFFSET_L, data[1]);
  writeByte(MPU6500_ADDRESS, YG_OFFSET_H, data[2]);
  writeByte(MPU6500_ADDRESS, YG_OFFSET_L, data[3]);
  writeByte(MPU6500_ADDRESS, ZG_OFFSET_H, data[4]);
  writeByte(MPU6500_ADDRESS, ZG_OFFSET_L, data[5]);
  
// Output scaled gyro biases for display in the main program
  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;  
  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;

// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.

  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
  readBytes(MPU6500_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
  accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  readBytes(MPU6500_ADDRESS, YA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  readBytes(MPU6500_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
  accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
  
  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
  
  for(ii = 0; ii < 3; ii++) {
    if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
  }
  
  // Construct total accelerometer bias, including calculated average accelerometer bias from above
  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
  accel_bias_reg[1] -= (accel_bias[1]/8);
  accel_bias_reg[2] -= (accel_bias[2]/8);
  
  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
  data[1] = (accel_bias_reg[0])      & 0xFF;
  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
  data[3] = (accel_bias_reg[1])      & 0xFF;
  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
  data[5] = (accel_bias_reg[2])      & 0xFF;
  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
 
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
/*  writeByte(MPU6500_ADDRESS, XA_OFFSET_H, data[0]);
  writeByte(MPU6500_ADDRESS, XA_OFFSET_L, data[1]);
  writeByte(MPU6500_ADDRESS, YA_OFFSET_H, data[2]);
  writeByte(MPU6500_ADDRESS, YA_OFFSET_L, data[3]);
  writeByte(MPU6500_ADDRESS, ZA_OFFSET_H, data[4]);
  writeByte(MPU6500_ADDRESS, ZA_OFFSET_L, data[5]);
*/
// Output scaled accelerometer biases for display in the main program
   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}


void magcalMPU6500(float * dest1) 
{
  uint16_t ii = 0, sample_count = 0;
  int32_t mag_bias[3] = {0, 0, 0};
  int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0}, mag_temp[3] = {0, 0, 0};
 
  Serial.println("Mag Calibration: Wave device in a figure eight until done!");
  delay(4000);
  
   sample_count = 64;
   for(ii = 0; ii < sample_count; ii++) {
    readMagData(mag_temp);  // Read the mag data   
    for (int jj = 0; jj < 3; jj++) {
      if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
      if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
    }
    delay(135);  // at 8 Hz ODR, new mag data is available every 125 ms
   }

//    Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
//    Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
//    Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);

    mag_bias[0]  = (mag_max[0] + mag_min[0])/2;  // get average x mag bias in counts
    mag_bias[1]  = (mag_max[1] + mag_min[1])/2;  // get average y mag bias in counts
    mag_bias[2]  = (mag_max[2] + mag_min[2])/2;  // get average z mag bias in counts
    
    dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0];  // save mag biases in G for main program
    dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];   
    dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];          

   Serial.println("Mag Calibration done!");
}



// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU6500SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
   uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
   uint8_t selfTest[6];
   int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
   float factoryTrim[6];
   uint8_t FS = 0;
   
  writeByte(MPU6500_ADDRESS, SMPLRT_DIV, 0x00);    // Set gyro sample rate to 1 kHz
  writeByte(MPU6500_ADDRESS, CONFIG, 0x02);        // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
  writeByte(MPU6500_ADDRESS, GYRO_CONFIG, 1<<FS);  // Set full scale range for the gyro to 250 dps
  writeByte(MPU6500_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
  writeByte(MPU6500_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g

  for( int ii = 0; ii < 200; ii++) {  // get average current values of gyro and acclerometer
  
  readBytes(MPU6500_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);        // Read the six raw data registers into data array
  aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  
    readBytes(MPU6500_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);       // Read the six raw data registers sequentially into data array
  gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  }
  
  for (int ii =0; ii < 3; ii++) {  // Get average of 200 values and store as average current readings
  aAvg[ii] /= 200;
  gAvg[ii] /= 200;
  }
  
// Configure the accelerometer for self-test
   writeByte(MPU6500_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
   writeByte(MPU6500_ADDRESS, GYRO_CONFIG,  0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
   delay(25);  // Delay a while to let the device stabilize

  for( int ii = 0; ii < 200; ii++) {  // get average self-test values of gyro and acclerometer
  
  readBytes(MPU6500_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
  aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  
    readBytes(MPU6500_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
  gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
  gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
  gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
  }
  
  for (int ii =0; ii < 3; ii++) {  // Get average of 200 values and store as average self-test readings
  aSTAvg[ii] /= 200;
  gSTAvg[ii] /= 200;
  }   
  
 // Configure the gyro and accelerometer for normal operation
   writeByte(MPU6500_ADDRESS, ACCEL_CONFIG, 0x00);  
   writeByte(MPU6500_ADDRESS, GYRO_CONFIG,  0x00);  
   delay(25);  // Delay a while to let the device stabilize
   
   // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
   selfTest[0] = readByte(MPU6500_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
   selfTest[1] = readByte(MPU6500_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
   selfTest[2] = readByte(MPU6500_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
   selfTest[3] = readByte(MPU6500_ADDRESS, SELF_TEST_X_GYRO);  // X-axis gyro self-test results
   selfTest[4] = readByte(MPU6500_ADDRESS, SELF_TEST_Y_GYRO);  // Y-axis gyro self-test results
   selfTest[5] = readByte(MPU6500_ADDRESS, SELF_TEST_Z_GYRO);  // Z-axis gyro self-test results

  // Retrieve factory self-test value from self-test code reads
   factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
   factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
   factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
   factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
   factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
   factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
 
 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
 // To get percent, must multiply by 100
   for (int i = 0; i < 3; i++) {
     destination[i]   = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i];   // Report percent differences
     destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
   }
   
}


void SENtralPassThroughMode()
{
  // First put SENtral in standby mode
  uint8_t c = readByte(EM7180_ADDRESS, EM7180_AlgorithmControl);
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01);
//  c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
//  Serial.print("c = "); Serial.println(c);
// Verify standby status
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
   Serial.println("SENtral in standby mode"); 
  // Place SENtral in pass-through mode
  writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); 
  if(readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) {
    Serial.println("SENtral in pass-through mode");
  }
  else {
    Serial.println("ERROR! SENtral not in pass-through mode!");
  }
  
 
 }
 
 

// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor
// since the address is defined by two bytes

        void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t  data)
{
	Wire.beginTransmission(device_address);   // Initialize the Tx buffer
	Wire.write(data_address1);                // Put slave register address in Tx buffer
	Wire.write(data_address2);                // Put slave register address in Tx buffer
	Wire.write(data);                         // Put data in Tx buffer
	Wire.endTransmission();                   // Send the Tx buffer
}


       void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
	if(count > 128) {
        count = 128;
        Serial.print("Page count cannot be more than 128 bytes!");
        }
        
        Wire.beginTransmission(device_address);   // Initialize the Tx buffer
	Wire.write(data_address1);                // Put slave register address in Tx buffer
	Wire.write(data_address2);                // Put slave register address in Tx buffer
	for(uint8_t i=0; i < count; i++) {
	Wire.write(dest[i]);                      // Put data in Tx buffer
	}
        Wire.endTransmission();                   // Send the Tx buffer
}


        uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2)
{
	uint8_t data; // `data` will store the register data	 
	Wire.beginTransmission(device_address);         // Initialize the Tx buffer
	Wire.write(data_address1);                // Put slave register address in Tx buffer
	Wire.write(data_address2);                // Put slave register address in Tx buffer
	Wire.endTransmission(I2C_NOSTOP);        // Send the Tx buffer, but send a restart to keep connection alive
//	Wire.endTransmission(false);             // Send the Tx buffer, but send a restart to keep connection alive
//	Wire.requestFrom(address, 1);  // Read one byte from slave register address 
	Wire.requestFrom(device_address, (size_t) 1);   // Read one byte from slave register address 
	data = Wire.read();                      // Fill Rx buffer with result
	return data;                             // Return data read from slave register
}

        void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{  
	Wire.beginTransmission(device_address);   // Initialize the Tx buffer
	Wire.write(data_address1);                     // Put slave register address in Tx buffer
	Wire.write(data_address2);                     // Put slave register address in Tx buffer
	Wire.endTransmission(I2C_NOSTOP);         // Send the Tx buffer, but send a restart to keep connection alive
//	Wire.endTransmission(false);              // Send the Tx buffer, but send a restart to keep connection alive
	uint8_t i = 0;
//        Wire.requestFrom(address, count);       // Read bytes from slave register address 
        Wire.requestFrom(device_address, (size_t) count);  // Read bytes from slave register address 
	while (Wire.available()) {
        dest[i++] = Wire.read(); }                // Put read results in the Rx buffer
}


int32_t readBMP280Temperature()
{
  uint8_t rawData[3];  // 20-bit pressure register data stored here
  readBytes(BMP280_ADDRESS, BMP280_TEMP_MSB, 3, &rawData[0]);  
  return (int32_t) (((int32_t) rawData[0] << 16 | (int32_t) rawData[1] << 8 | rawData[2]) >> 4);
}

int32_t readBMP280Pressure()
{
  uint8_t rawData[3];  // 20-bit pressure register data stored here
  readBytes(BMP280_ADDRESS, BMP280_PRESS_MSB, 3, &rawData[0]);  
  return (int32_t) (((int32_t) rawData[0] << 16 | (int32_t) rawData[1] << 8 | rawData[2]) >> 4);
}

void BMP280Init()
{
  // Configure the BMP280
  // Set T and P oversampling rates and sensor mode
  writeByte(BMP280_ADDRESS, BMP280_CTRL_MEAS, Tosr << 5 | Posr << 2 | Mode);
  // Set standby time interval in normal mode and bandwidth
  writeByte(BMP280_ADDRESS, BMP280_CONFIG, SBy << 5 | IIRFilter << 2);
  // Read and store calibration data
  uint8_t calib[24];
  readBytes(BMP280_ADDRESS, BMP280_CALIB00, 24, &calib[0]);
  dig_T1 = (uint16_t)(((uint16_t) calib[1] << 8) | calib[0]);
  dig_T2 = ( int16_t)((( int16_t) calib[3] << 8) | calib[2]);
  dig_T3 = ( int16_t)((( int16_t) calib[5] << 8) | calib[4]);
  dig_P1 = (uint16_t)(((uint16_t) calib[7] << 8) | calib[6]);
  dig_P2 = ( int16_t)((( int16_t) calib[9] << 8) | calib[8]);
  dig_P3 = ( int16_t)((( int16_t) calib[11] << 8) | calib[10]);
  dig_P4 = ( int16_t)((( int16_t) calib[13] << 8) | calib[12]);
  dig_P5 = ( int16_t)((( int16_t) calib[15] << 8) | calib[14]);
  dig_P6 = ( int16_t)((( int16_t) calib[17] << 8) | calib[16]);
  dig_P7 = ( int16_t)((( int16_t) calib[19] << 8) | calib[18]);
  dig_P8 = ( int16_t)((( int16_t) calib[21] << 8) | calib[20]);
  dig_P9 = ( int16_t)((( int16_t) calib[23] << 8) | calib[22]);
}

// Returns temperature in DegC, resolution is 0.01 DegC. Output value of
// “5123” equals 51.23 DegC.
int32_t bmp280_compensate_T(int32_t adc_T)
{
  int32_t var1, var2, T;
  var1 = ((((adc_T >> 3) - ((int32_t)dig_T1 << 1))) * ((int32_t)dig_T2)) >> 11;
  var2 = (((((adc_T >> 4) - ((int32_t)dig_T1)) * ((adc_T >> 4) - ((int32_t)dig_T1))) >> 12) * ((int32_t)dig_T3)) >> 14;
  t_fine = var1 + var2;
  T = (t_fine * 5 + 128) >> 8;
  return T;
}

// Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8
//fractional bits).
//Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa
uint32_t bmp280_compensate_P(int32_t adc_P)
{
  long long var1, var2, p;
  var1 = ((long long)t_fine) - 128000;
  var2 = var1 * var1 * (long long)dig_P6;
  var2 = var2 + ((var1*(long long)dig_P5)<<17);
  var2 = var2 + (((long long)dig_P4)<<35);
  var1 = ((var1 * var1 * (long long)dig_P3)>>8) + ((var1 * (long long)dig_P2)<<12);
  var1 = (((((long long)1)<<47)+var1))*((long long)dig_P1)>>33;
  if(var1 == 0)
  {
    return 0;
    // avoid exception caused by division by zero
  }
  p = 1048576 - adc_P;
  p = (((p<<31) - var2)*3125)/var1;
  var1 = (((long long)dig_P9) * (p>>13) * (p>>13)) >> 25;
  var2 = (((long long)dig_P8) * p)>> 19;
  p = ((p + var1 + var2) >> 8) + (((long long)dig_P7)<<4);
  return (uint32_t)p;
}




// simple function to scan for I2C devices on the bus
void I2Cscan() 
{
    // scan for i2c devices
  byte error, address;
  int nDevices;

  Serial.println("Scanning...");

  nDevices = 0;
  for(address = 1; address < 127; address++ ) 
  {
    // The i2c_scanner uses the return value of
    // the Write.endTransmisstion to see if
    // a device did acknowledge to the address.
    Wire.beginTransmission(address);
    error = Wire.endTransmission();

    if (error == 0)
    {
      Serial.print("I2C device found at address 0x");
      if (address<16) 
        Serial.print("0");
      Serial.print(address,HEX);
      Serial.println("  !");

      nDevices++;
    }
    else if (error==4) 
    {
      Serial.print("Unknow error at address 0x");
      if (address<16) 
        Serial.print("0");
      Serial.println(address,HEX);
    }    
  }
  if (nDevices == 0)
    Serial.println("No I2C devices found\n");
  else
    Serial.println("done\n");
}


// I2C read/write functions for the MPU6500 and AK8963 sensors

        void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
	Wire.beginTransmission(address);  // Initialize the Tx buffer
	Wire.write(subAddress);           // Put slave register address in Tx buffer
	Wire.write(data);                 // Put data in Tx buffer
	Wire.endTransmission();           // Send the Tx buffer
}

        uint8_t readByte(uint8_t address, uint8_t subAddress)
{
	uint8_t data; // `data` will store the register data	 
	Wire.beginTransmission(address);         // Initialize the Tx buffer
	Wire.write(subAddress);	                 // Put slave register address in Tx buffer
	Wire.endTransmission(I2C_NOSTOP);        // Send the Tx buffer, but send a restart to keep connection alive
//	Wire.endTransmission(false);             // Send the Tx buffer, but send a restart to keep connection alive
//	Wire.requestFrom(address, 1);  // Read one byte from slave register address 
	Wire.requestFrom(address, (size_t) 1);   // Read one byte from slave register address 
	data = Wire.read();                      // Fill Rx buffer with result
	return data;                             // Return data read from slave register
}

        void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{  
	Wire.beginTransmission(address);   // Initialize the Tx buffer
	Wire.write(subAddress);            // Put slave register address in Tx buffer
	Wire.endTransmission(I2C_NOSTOP);  // Send the Tx buffer, but send a restart to keep connection alive
//	Wire.endTransmission(false);       // Send the Tx buffer, but send a restart to keep connection alive
	uint8_t i = 0;
//        Wire.requestFrom(address, count);  // Read bytes from slave register address 
        Wire.requestFrom(address, (size_t) count);  // Read bytes from slave register address 
	while (Wire.available()) {
        dest[i++] = Wire.read(); }         // Put read results in the Rx buffer
}

void EM7180_set_gyro_FS (uint16_t gyro_fs) {
  uint8_t bytes[4], STAT;
  bytes[0] = gyro_fs & (0xFF);
  bytes[1] = (gyro_fs >> 8) & (0xFF);
  bytes[2] = 0x00;
  bytes[3] = 0x00;
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
  STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
  while(!(STAT==0xCB)) {
    STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}

void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) {
  uint8_t bytes[4], STAT;
  bytes[0] = mag_fs & (0xFF);
  bytes[1] = (mag_fs >> 8) & (0xFF);
  bytes[2] = acc_fs & (0xFF);
  bytes[3] = (acc_fs >> 8) & (0xFF);
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
  STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
  while(!(STAT==0xCA)) {
    STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}

void EM7180_set_integer_param (uint8_t param, uint32_t param_val) {
  uint8_t bytes[4], STAT;
  bytes[0] = param_val & (0xFF);
  bytes[1] = (param_val >> 8) & (0xFF);
  bytes[2] = (param_val >> 16) & (0xFF);
  bytes[3] = (param_val >> 24) & (0xFF);
  param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]);
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]);
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
  STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
  while(!(STAT==param)) {
    STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}

void EM7180_set_float_param (uint8_t param, float param_val) {
  uint8_t bytes[4], STAT;
  float_to_bytes (param_val, &bytes[0]);
  param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]);
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]);
  writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
  STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
  while(!(STAT==param)) {
    STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
  }
  writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
  writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}