/* * lis2mdl.c * The LIS2MDL is a low power magnetometer, here used as 3 DoF in a 10 DoF * absolute orientation solution. * * Created on: Jan 18, 2021 * Author: Daniel Peter Chokola * * Adapted From: * EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly * by: Kris Winer * 09/23/2017 Copyright Tlera Corporation * * Library may be used freely and without limit with attribution. */ /* Includes */ #include #include "em7180_common.h" #include "lis2mdl.h" /* Private Global Variables */ /* Function Prototypes */ /* Function Definitions */ void lis2mdl_init(lis2mdl_t *lis2mdl, uint8_t m_odr) { if(!lis2mdl) { return; } lis2mdl->m_odr = m_odr; } void lis2mdl_config(lis2mdl_t *lis2mdl, I2C_HandleTypeDef *hi2c) { // enable temperature compensation (bit 7 == 1), continuous mode (bits 0:1 == 00) broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, 0x80 | lis2mdl->m_odr << 2); // enable low pass filter (bit 0 == 1), set to ODR/4 broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_B, 0x01); // enable data ready on interrupt pin (bit 0 == 1), enable block data read (bit 4 == 1) broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, 0x01 | 0x10); } uint8_t lis2mdl_chip_id_get(I2C_HandleTypeDef *hi2c) { uint8_t c = broken_i2c_read_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_WHO_AM_I); return c; } void lis2mdl_reset(I2C_HandleTypeDef *hi2c) { // reset device uint8_t temp = broken_i2c_read_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A); broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x20); // Set bit 5 to 1 to reset LIS2MDL HAL_Delay(1); broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x40); // Set bit 6 to 1 to boot LIS2MDL HAL_Delay(100); // Wait for all registers to reset } uint8_t lis2mdl_status(I2C_HandleTypeDef *hi2c) { // Read the status register of the altimeter uint8_t temp = broken_i2c_read_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_STATUS_REG); return temp; } void lis2mdl_data_get(I2C_HandleTypeDef *hi2c, int16_t *destination) { uint8_t data[6]; // x/y/z mag register data stored here broken_i2c_read(hi2c, LIS2MDL_ADDRESS, (0x80 | LIS2MDL_OUTX_L_REG), data, 8); // Read the 6 raw data registers into data array destination[0] = ((int16_t) data[1] << 8) | data[0]; // Turn the MSB and LSB into a signed 16-bit value destination[1] = ((int16_t) data[3] << 8) | data[2]; destination[2] = ((int16_t) data[5] << 8) | data[4]; } int16_t lis2mdl_temp_get() { uint8_t data[2]; // x/y/z mag register data stored here lis2mdl_read_bytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_TEMP_OUT_L_REG), 2, &data[0]); // Read the 8 raw data registers into data array int16_t temp = ((int16_t) data[1] << 8) | data[0]; // Turn the MSB and LSB into a signed 16-bit value return temp; } void lis2mdl_offset_bias(I2C_HandleTypeDef *hi2c, float *dest1, float *dest2) { int32_t mag_bias[3] = { 0, 0, 0 }, mag_scale[3] = { 0, 0, 0 }; int16_t mag_max[3] = { -32767, -32767, -32767 }, mag_min[3] = { 32767, 32767, 32767 }, mag_temp[3] = { 0, 0, 0 }; float m_res = 0.0015f; /* Serial.println("Calculate mag offset bias: move all around to sample the complete response surface!"); */ HAL_Delay(4000); for(int ii = 0; ii < 4000; ii++) { lis2mdl_data_get(hi2c, mag_temp); for(int jj = 0; jj < 3; jj++) { if(mag_temp[jj] > mag_max[jj]) { mag_max[jj] = mag_temp[jj]; } if(mag_temp[jj] < mag_min[jj]) { mag_min[jj] = mag_temp[jj]; } } HAL_Delay(12); } m_res = 0.0015f; // fixed sensitivity // Get hard iron correction mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts dest1[0] = (float) mag_bias[0] * m_res; // save mag biases in G for main program dest1[1] = (float) mag_bias[1] * m_res; dest1[2] = (float) mag_bias[2] * m_res; // Get soft iron correction estimate mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2]; avg_rad /= 3.0f; dest2[0] = avg_rad / ((float) mag_scale[0]); dest2[1] = avg_rad / ((float) mag_scale[1]); dest2[2] = avg_rad / ((float) mag_scale[2]); /* Serial.println("Mag Calibration done!"); */ } void lis2mdl_self_test(I2C_HandleTypeDef *hi2c) { int16_t temp[3] = { 0, 0, 0 }; float magTest[3] = { 0., 0., 0. }; float magNom[3] = { 0., 0., 0. }; int32_t sum[3] = { 0, 0, 0 }; float m_res = 0.0015f; // first, get average response with self test disabled for(int ii = 0; ii < 50; ii++) { lis2mdl_data_get(hi2c, temp); sum[0] += temp[0]; sum[1] += temp[1]; sum[2] += temp[2]; HAL_Delay(50); } magNom[0] = (float) sum[0] / 50.0f; magNom[1] = (float) sum[1] / 50.0f; magNom[2] = (float) sum[2] / 50.0f; uint8_t c = broken_i2c_read_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C); broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c | 0x02); // enable self test HAL_Delay(100); // let mag respond sum[0] = 0; sum[1] = 0; sum[2] = 0; for(int ii = 0; ii < 50; ii++) { lis2mdl_data_get(hi2c, temp); sum[0] += temp[0]; sum[1] += temp[1]; sum[2] += temp[2]; HAL_Delay(50); } magTest[0] = (float) sum[0] / 50.0f; magTest[1] = (float) sum[1] / 50.0f; magTest[2] = (float) sum[2] / 50.0f; broken_i2c_write_byte(hi2c, LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c); // return to previous settings/normal mode HAL_Delay(100); // let mag respond /* Serial.println("Mag Self Test:"); */ /* Serial.print("Mx results:"); */ /* Serial.print((magTest[0] - magNom[0]) * m_res * 1000.0); */ /* Serial.println(" mG"); */ /* Serial.print("My results:"); */ /* Serial.println((magTest[0] - magNom[0]) * m_res * 1000.0); */ /* Serial.print("Mz results:"); */ /* Serial.println((magTest[1] - magNom[1]) * m_res * 1000.0); */ /* Serial.println("Should be between 15 and 500 mG"); */ HAL_Delay(2000); // give some time to read the screen }