You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1455 lines
65 KiB

/* EM7180_LSM9DS0_MS5637_t3 Basic Example Code
by: Kris Winer
date: January 24, 2014
license: Beerware - Use this code however you'd like. If you
find it useful you can buy me a beer some time.
The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors,
in this case the LSM9DS0, and does sensor fusion with quaternions as its output. The SENtral loads firmware from the
on-board M24512DFMC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus,
and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and
heading/pitch/roll, if selected.
This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
Mahony filter algorithms to compare with the hardware sensor fusion results.
Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master,
the LSM9DS0 9-axis motion sensor (accel/gyro/mag) as slave, an MS5637 pressure/temperature sensor, and an M24512DFM
512kbit (64 kByte) EEPROM as slave all connected via I2C. The SENtral cannot use the pressure data in the sensor fusion
yet and there is currently no driver for the MS5637 in the SENtral firmware. However, like the MAX21100, the SENtral
can be toggled into a bypass mode where the pressure sensor (and EEPROM and BMX055) may be read directly by the
Teensy 3.1 host micrcontroller. If the read rate is infrequent enough (2 Hz is sufficient since pressure and temperature
do not change very fast), then the sensor fusion rate is not significantly affected.
This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h.
The MS5637 is a simple but high resolution pressure sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
only 1 microAmp. The choice will depend on the application.
SDA and SCL should have external pull-up resistors (to 3.3V).
4k7 resistors are on the EM7180+LSM9DS0+MS5637+M24512DFM Mini Add-On board for Teensy 3.1.
Hardware setup:
EM7180 Mini Add-On ------- Teensy 3.1
VDD ---------------------- 3.3V
SDA ----------------------- 17
SCL ----------------------- 16
GND ---------------------- GND
INT------------------------ 8
Note: The LSM9DS0 is an I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library.
Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
*/
//#include "Wire.h"
#include <i2c_t3.h>
#include <SPI.h>
#include <Adafruit_GFX.h>
#include <Adafruit_PCD8544.h>
// Using NOKIA 5110 monochrome 84 x 48 pixel display
// pin 7 - Serial clock out (SCLK)
// pin 6 - Serial data out (DIN)
// pin 5 - Data/Command select (D/C)
// pin 3 - LCD chip select (SCE)
// pin 4 - LCD reset (RST)
Adafruit_PCD8544 display = Adafruit_PCD8544(7, 6, 5, 3, 4);
// See MS5637-02BA03 Low Voltage Barometric Pressure Sensor Data Sheet http://www.meas-spec.com/downloads/MS5637-02BA03.pdf
#define MS5637_RESET 0x1E
#define MS5637_CONVERT_D1 0x40
#define MS5637_CONVERT_D2 0x50
#define MS5637_ADC_READ 0x00
// See also LSM9DS0 Register Map and Descriptions,http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00087365.pdf
//
////////////////////////////
// LSM9DS0 Gyro Registers //
////////////////////////////
#define LSM9DS0G_WHO_AM_I_G 0x0F
#define LSM9DS0G_CTRL_REG1_G 0x20
#define LSM9DS0G_CTRL_REG2_G 0x21
#define LSM9DS0G_CTRL_REG3_G 0x22
#define LSM9DS0G_CTRL_REG4_G 0x23
#define LSM9DS0G_CTRL_REG5_G 0x24
#define LSM9DS0G_REFERENCE_G 0x25
#define LSM9DS0G_STATUS_REG_G 0x27
#define LSM9DS0G_OUT_X_L_G 0x28
#define LSM9DS0G_OUT_X_H_G 0x29
#define LSM9DS0G_OUT_Y_L_G 0x2A
#define LSM9DS0G_OUT_Y_H_G 0x2B
#define LSM9DS0G_OUT_Z_L_G 0x2C
#define LSM9DS0G_OUT_Z_H_G 0x2D
#define LSM9DS0G_FIFO_CTRL_REG_G 0x2E
#define LSM9DS0G_FIFO_SRC_REG_G 0x2F
#define LSM9DS0G_INT1_CFG_G 0x30
#define LSM9DS0G_INT1_SRC_G 0x31
#define LSM9DS0G_INT1_THS_XH_G 0x32
#define LSM9DS0G_INT1_THS_XL_G 0x33
#define LSM9DS0G_INT1_THS_YH_G 0x34
#define LSM9DS0G_INT1_THS_YL_G 0x35
#define LSM9DS0G_INT1_THS_ZH_G 0x36
#define LSM9DS0G_INT1_THS_ZL_G 0x37
#define LSM9DS0G_INT1_DURATION_G 0x38
//////////////////////////////////////////
// LSM9DS0XM Accel/Magneto (XM) Registers //
//////////////////////////////////////////
#define LSM9DS0XM_OUT_TEMP_L_XM 0x05
#define LSM9DS0XM_OUT_TEMP_H_XM 0x06
#define LSM9DS0XM_STATUS_REG_M 0x07
#define LSM9DS0XM_OUT_X_L_M 0x08
#define LSM9DS0XM_OUT_X_H_M 0x09
#define LSM9DS0XM_OUT_Y_L_M 0x0A
#define LSM9DS0XM_OUT_Y_H_M 0x0B
#define LSM9DS0XM_OUT_Z_L_M 0x0C
#define LSM9DS0XM_OUT_Z_H_M 0x0D
#define LSM9DS0XM_WHO_AM_I_XM 0x0F
#define LSM9DS0XM_INT_CTRL_REG_M 0x12
#define LSM9DS0XM_INT_SRC_REG_M 0x13
#define LSM9DS0XM_INT_THS_L_M 0x14
#define LSM9DS0XM_INT_THS_H_M 0x15
#define LSM9DS0XM_OFFSET_X_L_M 0x16
#define LSM9DS0XM_OFFSET_X_H_M 0x17
#define LSM9DS0XM_OFFSET_Y_L_M 0x18
#define LSM9DS0XM_OFFSET_Y_H_M 0x19
#define LSM9DS0XM_OFFSET_Z_L_M 0x1A
#define LSM9DS0XM_OFFSET_Z_H_M 0x1B
#define LSM9DS0XM_REFERENCE_X 0x1C
#define LSM9DS0XM_REFERENCE_Y 0x1D
#define LSM9DS0XM_REFERENCE_Z 0x1E
#define LSM9DS0XM_CTRL_REG0_XM 0x1F
#define LSM9DS0XM_CTRL_REG1_XM 0x20
#define LSM9DS0XM_CTRL_REG2_XM 0x21
#define LSM9DS0XM_CTRL_REG3_XM 0x22
#define LSM9DS0XM_CTRL_REG4_XM 0x23
#define LSM9DS0XM_CTRL_REG5_XM 0x24
#define LSM9DS0XM_CTRL_REG6_XM 0x25
#define LSM9DS0XM_CTRL_REG7_XM 0x26
#define LSM9DS0XM_STATUS_REG_A 0x27
#define LSM9DS0XM_OUT_X_L_A 0x28
#define LSM9DS0XM_OUT_X_H_A 0x29
#define LSM9DS0XM_OUT_Y_L_A 0x2A
#define LSM9DS0XM_OUT_Y_H_A 0x2B
#define LSM9DS0XM_OUT_Z_L_A 0x2C
#define LSM9DS0XM_OUT_Z_H_A 0x2D
#define LSM9DS0XM_FIFO_CTRL_REG 0x2E
#define LSM9DS0XM_FIFO_SRC_REG 0x2F
#define LSM9DS0XM_INT_GEN_1_REG 0x30
#define LSM9DS0XM_INT_GEN_1_SRC 0x31
#define LSM9DS0XM_INT_GEN_1_THS 0x32
#define LSM9DS0XM_INT_GEN_1_DURATION 0x33
#define LSM9DS0XM_INT_GEN_2_REG 0x34
#define LSM9DS0XM_INT_GEN_2_SRC 0x35
#define LSM9DS0XM_INT_GEN_2_THS 0x36
#define LSM9DS0XM_INT_GEN_2_DURATION 0x37
#define LSM9DS0XM_CLICK_CFG 0x38
#define LSM9DS0XM_CLICK_SRC 0x39
#define LSM9DS0XM_CLICK_THS 0x3A
#define LSM9DS0XM_TIME_LIMIT 0x3B
#define LSM9DS0XM_TIME_LATENCY 0x3C
#define LSM9DS0XM_TIME_WINDOW 0x3D
#define LSM9DS0XM_ACT_THS 0x3E
#define LSM9DS0XM_ACT_DUR 0x3F
// EM7180 SENtral register map
// see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf
//
#define EM7180_QX 0x00 // this is a 32-bit normalized floating point number read from registers 0x00-03
#define EM7180_QY 0x04 // this is a 32-bit normalized floating point number read from registers 0x04-07
#define EM7180_QZ 0x08 // this is a 32-bit normalized floating point number read from registers 0x08-0B
#define EM7180_QW 0x0C // this is a 32-bit normalized floating point number read from registers 0x0C-0F
#define EM7180_QTIME 0x10 // this is a 16-bit unsigned integer read from registers 0x10-11
#define EM7180_MX 0x12 // int16_t from registers 0x12-13
#define EM7180_MY 0x14 // int16_t from registers 0x14-15
#define EM7180_MZ 0x16 // int16_t from registers 0x16-17
#define EM7180_MTIME 0x18 // uint16_t from registers 0x18-19
#define EM7180_AX 0x1A // int16_t from registers 0x1A-1B
#define EM7180_AY 0x1C // int16_t from registers 0x1C-1D
#define EM7180_AZ 0x1E // int16_t from registers 0x1E-1F
#define EM7180_ATIME 0x20 // uint16_t from registers 0x20-21
#define EM7180_GX 0x22 // int16_t from registers 0x22-23
#define EM7180_GY 0x24 // int16_t from registers 0x24-25
#define EM7180_GZ 0x26 // int16_t from registers 0x26-27
#define EM7180_GTIME 0x28 // uint16_t from registers 0x28-29
#define EM7180_QRateDivisor 0x32 // uint8_t
#define EM7180_EnableEvents 0x33
#define EM7180_HostControl 0x34
#define EM7180_EventStatus 0x35
#define EM7180_SensorStatus 0x36
#define EM7180_SentralStatus 0x37
#define EM7180_AlgorithmStatus 0x38
#define EM7180_FeatureFlags 0x39
#define EM7180_ParamAcknowledge 0x3A
#define EM7180_SavedParamByte0 0x3B
#define EM7180_SavedParamByte1 0x3C
#define EM7180_SavedParamByte2 0x3D
#define EM7180_SavedParamByte3 0x3E
#define EM7180_ActualMagRate 0x45
#define EM7180_ActualAccelRate 0x46
#define EM7180_ActualGyroRate 0x47
#define EM7180_ErrorRegister 0x50
#define EM7180_AlgorithmControl 0x54
#define EM7180_MagRate 0x55
#define EM7180_AccelRate 0x56
#define EM7180_GyroRate 0x57
#define EM7180_LoadParamByte0 0x60
#define EM7180_LoadParamByte1 0x61
#define EM7180_LoadParamByte2 0x62
#define EM7180_LoadParamByte3 0x63
#define EM7180_ParamRequest 0x64
#define EM7180_ROMVersion1 0x70
#define EM7180_ROMVersion2 0x71
#define EM7180_RAMVersion1 0x72
#define EM7180_RAMVersion2 0x73
#define EM7180_ProductID 0x90
#define EM7180_RevisionID 0x91
#define EM7180_RunStatus 0x92
#define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB)
#define EM7180_UploadData 0x96
#define EM7180_CRCHost 0x97 // uint32_t from registers 0x97-9A
#define EM7180_ResetRequest 0x9B
#define EM7180_PassThruStatus 0x9E
#define EM7180_PassThruControl 0xA0
// Using the Teensy Mini Add-On board, LSM9DS0 SDOG = SDOXM = GND as designed
// Seven-bit LSM9DS0 device addresses are ACC = 0x1E, GYRO = 0x6A, MAG = 0x1E
// Using the EM7180+LSM9DS0+MS5637 Teensy 3.1 Add-On shield, ADO is set to 0
#define ADO 0
#if ADO
#define LSM9DS0XM_ADDRESS 0x1D // Address of accel/magnetometer when ADO = 1
#define LSM9DS0G_ADDRESS 0x6B // Address of gyro when ADO = 1
#else
#define LSM9DS0XM_ADDRESS 0x1E // Address of accel/magnetometer when ADO = 0
#define LSM9DS0G_ADDRESS 0x6A // Address of gyro when ADO = 0
#endif
#define MS5637_ADDRESS 0x76 // Address of MS5637 altimeter
#define EM7180_ADDRESS 0x28 // Address of the EM7180 SENtral sensor hub
#define M24512DFM_DATA_ADDRESS 0x50 // Address of the 500 page M24512DFM EEPROM data buffer, 1024 bits (128 8-bit bytes) per page
#define M24512DFM_IDPAGE_ADDRESS 0x58 // Address of the single M24512DFM lockable EEPROM ID page
#define SerialDebug true // set to true to get Serial output for debugging
// Set initial input parameters
enum Ascale { // set of allowable accel full scale settings
AFS_2G = 0,
AFS_4G,
AFS_6G,
AFS_8G,
AFS_16G
};
enum Aodr { // set of allowable gyro sample rates
AODR_PowerDown = 0,
AODR_3_125Hz,
AODR_6_25Hz,
AODR_12_5Hz,
AODR_25Hz,
AODR_50Hz,
AODR_100Hz,
AODR_200Hz,
AODR_400Hz,
AODR_800Hz,
AODR_1600Hz
};
enum Abw { // set of allowable accewl bandwidths
ABW_773Hz = 0,
ABW_194Hz,
ABW_362Hz,
ABW_50Hz
};
enum Gscale { // set of allowable gyro full scale settings
GFS_245DPS = 0,
GFS_500DPS,
GFS_NoOp,
GFS_2000DPS
};
enum Godr { // set of allowable gyro sample rates
GODR_95Hz = 0,
GODR_190Hz,
GODR_380Hz,
GODR_760Hz
};
enum Gbw { // set of allowable gyro data bandwidths
GBW_low = 0, // 12.5 Hz at Godr = 95 Hz, 12.5 Hz at Godr = 190 Hz, 30 Hz at Godr = 760 Hz
GBW_med, // 25 Hz at Godr = 95 Hz, 25 Hz at Godr = 190 Hz, 35 Hz at Godr = 760 Hz
GBW_high, // 25 Hz at Godr = 95 Hz, 50 Hz at Godr = 190 Hz, 50 Hz at Godr = 760 Hz
GBW_highest // 25 Hz at Godr = 95 Hz, 70 Hz at Godr = 190 Hz, 100 Hz at Godr = 760 Hz
};
enum Mscale { // set of allowable mag full scale settings
MFS_2G = 0,
MFS_4G,
MFS_8G,
MFS_12G
};
enum Mres {
MRES_LowResolution = 0,
MRES_NoOp,
MRES_HighResolution
};
enum Modr { // set of allowable mag sample rates
MODR_3_125Hz = 0,
MODR_6_25Hz,
MODR_12_5Hz,
MODR_25Hz,
MODR_50Hz,
MODR_100Hz
};
// MS5637 pressure sensor sample rates
#define ADC_256 0x00 // define pressure and temperature conversion rates
#define ADC_512 0x02
#define ADC_1024 0x04
#define ADC_2048 0x06
#define ADC_4096 0x08
#define ADC_8192 0x0A
#define ADC_D1 0x40
#define ADC_D2 0x50
// Specify sensor full scale
uint8_t OSR = ADC_8192; // set pressure amd temperature oversample rate
uint8_t Gscale = GFS_245DPS; // gyro full scale
uint8_t Godr = GODR_190Hz; // gyro data sample rate
uint8_t Gbw = GBW_low; // gyro data bandwidth
uint8_t Ascale = AFS_2G; // accel full scale
uint8_t Aodr = AODR_200Hz; // accel data sample rate
uint8_t Abw = ABW_50Hz; // accel data bandwidth
uint8_t Mscale = MFS_12G; // mag full scale
uint8_t Modr = MODR_6_25Hz; // mag data sample rate
uint8_t Mres = MRES_LowResolution; // magnetometer operation mode
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
// Pin definitions
int myLed = 13; // LED on the Teensy 3.1
// MS5637 variables
uint16_t Pcal[8]; // calibration constants from MS5637 PROM registers
unsigned char nCRC; // calculated check sum to ensure PROM integrity
uint32_t D1 = 0, D2 = 0; // raw MS5637 pressure and temperature data
double dT, OFFSET, SENS, T2, OFFSET2, SENS2; // First order and second order corrections for raw S5637 temperature and pressure data
double Temperature, Pressure; // stores MS5637 pressures sensor pressure and temperature
// LSM9DS0 variables
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float Quat[4] = {0, 0, 0, 0}; // quaternion data register
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag
int16_t tempCount; // temperature raw count output
float temperature; // Stores the BMX055 internal chip temperature in degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
uint32_t delt_t = 0, count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll, Yaw, Pitch, Roll;
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
bool passThru = true;
void setup()
{
// Wire.begin();
// TWBR = 12; // 400 kbit/sec I2C speed for Pro Mini
// Setup for Master mode, pins 18/19, external pullups, 400kHz for Teensy 3.1
Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400);
delay(5000);
Serial.begin(38400);
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
I2Cscan(); // should detect SENtral at 0x28
// Read SENtral device information
uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1);
uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2);
Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609");
uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1);
uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2);
Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2);
uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID);
Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80");
uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID);
Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02");
delay(1000); // give some time to read the screen
// Check SENtral status, make sure EEPROM upload of firmware was accomplished
byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!");
int count = 0;
while(!STAT) {
writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01);
delay(500);
count++;
STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!");
if(count > 10) break;
}
if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!");
delay(1000); // give some time to read the screen
// Set up the SENtral as sensor bus in normal operating mode
if(!passThru) {
// Enter EM7180 initialized state
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off
// Set accel/gyro/mage desired ODR rates
writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 95 Hz
writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x19); // 25 Hz
writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x0A); // 100/10 Hz
writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x13); // 190/10 Hz
// Configure operating mode
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data
// Enable interrupt to host upon certain events
// choose interrupts when quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07);
// Enable EM7180 run mode
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode
delay(100);
// Read EM7180 status
uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus);
if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode");
uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
if(algoStatus & 0x01) Serial.println(" EM7180 standby status");
if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow");
if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode");
if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed");
if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected");
if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data");
uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!");
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus);
if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset");
if(eventStatus & 0x02) Serial.println(" EM7180 Error");
if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result");
if(eventStatus & 0x08) Serial.println(" EM7180 new mag result");
if(eventStatus & 0x10) Serial.println(" EM7180 new accel result");
if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result");
delay(1000); // give some time to read the screen
// Check sensor status
uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus);
Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus);
if(sensorStatus == 0x00) Serial.println("All sensors OK!");
if(sensorStatus & 0x01) Serial.println("Magnetometer not acknowledging!");
if(sensorStatus & 0x02) Serial.println("Accelerometer not acknowledging!");
if(sensorStatus & 0x04) Serial.println("Gyro not acknowledging!");
if(sensorStatus & 0x10) Serial.println("Magnetometer ID not recognized!");
if(sensorStatus & 0x20) Serial.println("Accelerometer ID not recognized!");
if(sensorStatus & 0x40) Serial.println("Gyro ID not recognized!");
Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz");
Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz");
Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz");
delay(1000); // give some time to read the screen
}
// If pass through mode desired, set it up here
if(passThru) {
// Put EM7180 SENtral into pass-through mode
SENtralPassThroughMode();
delay(1000);
I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages)
// Read first page of EEPROM
uint8_t data[128];
M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data);
Serial.println("EEPROM Signature Byte");
Serial.print(data[0], HEX); Serial.println(" Should be 0x2A");
Serial.print(data[1], HEX); Serial.println(" Should be 0x65");
for (int i = 0; i < 128; i++) {
Serial.print(data[i], HEX); Serial.print(" ");
}
// Set up the interrupt pin, its set as active high, push-pull
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
display.begin(); // Initialize the display
display.setContrast(58); // Set the contrast
// Start device display with ID of sensor
display.clearDisplay();
display.setTextSize(2);
display.setCursor(0,0); display.print("LSM9DS0");
display.setTextSize(1);
display.setCursor(0, 20); display.print("9-DOF 16-bit");
display.setCursor(0, 30); display.print("motion sensor");
display.setCursor(20,40); display.print("60 ug LSB");
display.display();
delay(1000);
// Set up for data display
display.setTextSize(1); // Set text size to normal, 2 is twice normal etc.
display.setTextColor(BLACK); // Set pixel color; 1 on the monochrome screen
display.clearDisplay(); // clears the screen and buffer
// Read the WHO_AM_I registers, this is a good test of communication
Serial.println("LSM9DS0 9-axis motion sensor...");
byte c = readByte(LSM9DS0G_ADDRESS, LSM9DS0G_WHO_AM_I_G); // Read WHO_AM_I register for LSM9DS0 gyro
Serial.println("LSM9DS0 gyro"); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0xD4, HEX);
byte d = readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_WHO_AM_I_XM); // Read WHO_AM_I register for LSM9DS0 accel/magnetometer
Serial.println("LSM9DS0 accel/magnetometer"); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x49, HEX);
if (c == 0xD4 && d == 0x49) // WHO_AM_I should always be 0xD4 for the gyro and 0x49 for the accel/mag
{
Serial.println("LSM9DS0 is online...");
initLSM9DS0();
Serial.println("LSM9DS0 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
// get sensor resolutions, only need to do this once
getAres();
getGres();
getMres();
Serial.print("accel sensitivity is "); Serial.print(1./(1000.*aRes)); Serial.println(" LSB/mg");
Serial.print("gyro sensitivity is "); Serial.print(1./(1000.*gRes)); Serial.println(" LSB/mdps");
Serial.print("mag sensitivity is "); Serial.print(1./(1000.*mRes)); Serial.println(" LSB/mGauss");
accelgyrocalLSM9DS0(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
magcalLSM9DS0(magBias);
Serial.println("mag biases (mG)"); Serial.println(1000.*magBias[0]); Serial.println(1000.*magBias[1]); Serial.println(1000.*magBias[2]);
/* display.clearDisplay();
display.setCursor(0, 0); display.print("LSM9DS0bias");
display.setCursor(0, 8); display.print(" x y z ");
display.setCursor(0, 16); display.print((int)(1000*accelBias[0]));
display.setCursor(24, 16); display.print((int)(1000*accelBias[1]));
display.setCursor(48, 16); display.print((int)(1000*accelBias[2]));
display.setCursor(72, 16); display.print("mg");
display.setCursor(0, 24); display.print(gyroBias[0], 1);
display.setCursor(24, 24); display.print(gyroBias[1], 1);
display.setCursor(48, 24); display.print(gyroBias[2], 1);
display.setCursor(66, 24); display.print("o/s");
display.display();
delay(1000);
*/
// Reset the MS5637 pressure sensor
MS5637Reset();
delay(100);
Serial.println("MS5637 pressure sensor reset...");
// Read PROM data from MS5637 pressure sensor
MS5637PromRead(Pcal);
Serial.println("PROM data read:");
Serial.print("C0 = "); Serial.println(Pcal[0]);
unsigned char refCRC = Pcal[0] >> 12;
Serial.print("C1 = "); Serial.println(Pcal[1]);
Serial.print("C2 = "); Serial.println(Pcal[2]);
Serial.print("C3 = "); Serial.println(Pcal[3]);
Serial.print("C4 = "); Serial.println(Pcal[4]);
Serial.print("C5 = "); Serial.println(Pcal[5]);
Serial.print("C6 = "); Serial.println(Pcal[6]);
nCRC = MS5637checkCRC(Pcal); //calculate checksum to ensure integrity of MS5637 calibration data
Serial.print("Checksum = "); Serial.print(nCRC); Serial.print(" , should be "); Serial.println(refCRC);
display.clearDisplay();
display.setCursor(20,0); display.print("MS5637");
display.setCursor(0,10); display.print("CRC is "); display.setCursor(50,10); display.print(nCRC);
display.setCursor(0,20); display.print("Should be "); display.setCursor(50,30); display.print(refCRC);
display.display();
delay(1000);
}
else
{
Serial.print("Could not connect to BMX055: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
}
}
void loop()
{
if(!passThru) {
// Check event status register, way to chech data ready by polling rather than interrupt
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register
// Check for errors
if(eventStatus & 0x02) { // error detected, what is it?
uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister);
if(!errorStatus) {
Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus);
if(errorStatus & 0x11) Serial.print("Magnetometer failure!");
if(errorStatus & 0x12) Serial.print("Accelerometer failure!");
if(errorStatus & 0x14) Serial.print("Gyro failure!");
if(errorStatus & 0x21) Serial.print("Magnetometer initialization failure!");
if(errorStatus & 0x22) Serial.print("Accelerometer initialization failure!");
if(errorStatus & 0x24) Serial.print("Gyro initialization failure!");
if(errorStatus & 0x30) Serial.print("Math error!");
if(errorStatus & 0x80) Serial.print("Invalid sample rate!");
}
// Handle errors ToDo
}
// if no errors, see if new data is ready
if(eventStatus & 0x10) { // new acceleration data available
readSENtralAccelData(accelCount);
// Now we'll calculate the accleration value into actual g's
ax = (float)accelCount[0]*0.000488; // get actual g value
ay = (float)accelCount[1]*0.000488;
az = (float)accelCount[2]*0.000488;
}
if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x20) { // new gyro data available
readSENtralGyroData(gyroCount);
// Now we'll calculate the gyro value into actual dps's
gx = (float)gyroCount[0]*0.153; // get actual dps value
gy = (float)gyroCount[1]*0.153;
gz = (float)gyroCount[2]*0.153;
}
if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x08) { // new mag data available
readSENtralMagData(magCount);
// Now we'll calculate the mag value into actual G's
mx = (float)magCount[0]*0.305176; // get actual G value
my = (float)magCount[1]*0.305176;
mz = (float)magCount[2]*0.305176;
}
if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x04) { // new quaternion data available
readSENtralQuatData(Quat);
}
}
if(passThru) {
if (readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_STATUS_REG_A) & 0x08) { // check if new accel data is ready
readAccelData(accelCount); // Read the x/y/z adc values
// Now we'll calculate the accleration value into actual g's
ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)accelCount[1]*aRes - accelBias[1];
az = (float)accelCount[2]*aRes - accelBias[2];
}
if (readByte(LSM9DS0G_ADDRESS, LSM9DS0G_STATUS_REG_G) & 0x08) { // check if new gyro data is ready
readGyroData(gyroCount); // Read the x/y/z adc values
// Calculate the gyro value into actual degrees per second
gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set
gy = (float)gyroCount[1]*gRes - gyroBias[1];
gz = (float)gyroCount[2]*gRes - gyroBias[2];
}
if (readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_STATUS_REG_M) & 0x08) { // check if new mag data is ready
readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental corrections
mx = (float)magCount[0]*mRes - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes - magBias[1];
mz = (float)magCount[2]*mRes - magBias[2];
}
}
// keep track of rates
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
// Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer;
// the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro!
// We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
// For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
// in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
// if(passThru)MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
// Serial print and/or display at 0.5 s rate independent of data rates
delt_t = millis() - count;
if (delt_t > 500) { // update LCD once per half-second independent of read rate
if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
if(!passThru) {
Serial.print("mx = "); Serial.print( mx);
Serial.print(" my = "); Serial.print( my);
Serial.print(" mz = "); Serial.print( mz); Serial.println(" mG");
}
else {
Serial.print("mx = "); Serial.print( (int)1000*mx);
Serial.print(" my = "); Serial.print( (int)1000*my);
Serial.print(" mz = "); Serial.print( (int)1000*mz); Serial.println(" mG");
}
Serial.println("Software quaternions:");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
Serial.println("Hardware quaternions:");
Serial.print("Q0 = "); Serial.print(Quat[3]);
Serial.print(" Qx = "); Serial.print(Quat[0]);
Serial.print(" Qy = "); Serial.print(Quat[1]);
Serial.print(" Qz = "); Serial.println(Quat[2]);
}
// tempCount = readTempData(); // Read the gyro adc values
// temperature = ((float) tempCount/8. + 25.0); // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade
// Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C
if(passThru) {
D1 = MS5637Read(ADC_D1, OSR); // get raw pressure value
D2 = MS5637Read(ADC_D2, OSR); // get raw temperature value
dT = D2 - Pcal[5]*pow(2,8); // calculate temperature difference from reference
OFFSET = Pcal[2]*pow(2, 17) + dT*Pcal[4]/pow(2,6);
SENS = Pcal[1]*pow(2,16) + dT*Pcal[3]/pow(2,7);
Temperature = (2000 + (dT*Pcal[6])/pow(2, 23))/100; // First-order Temperature in degrees Centigrade
//
// Second order corrections
if(Temperature > 20)
{
T2 = 5*dT*dT/pow(2, 38); // correction for high temperatures
OFFSET2 = 0;
SENS2 = 0;
}
if(Temperature < 20) // correction for low temperature
{
T2 = 3*dT*dT/pow(2, 33);
OFFSET2 = 61*(100*Temperature - 2000)*(100*Temperature - 2000)/16;
SENS2 = 29*(100*Temperature - 2000)*(100*Temperature - 2000)/16;
}
if(Temperature < -15) // correction for very low temperature
{
OFFSET2 = OFFSET2 + 17*(100*Temperature + 1500)*(100*Temperature + 1500);
SENS2 = SENS2 + 9*(100*Temperature + 1500)*(100*Temperature + 1500);
}
// End of second order corrections
//
Temperature = Temperature - T2/100;
OFFSET = OFFSET - OFFSET2;
SENS = SENS - SENS2;
Pressure = (((D1*SENS)/pow(2, 21) - OFFSET)/pow(2, 15))/100; // Pressure in mbar or kPa
float altitude = 145366.45*(1. - pow((Pressure/1013.25), 0.190284));
if(SerialDebug) {
Serial.print("Digital temperature value = "); Serial.print( (float)Temperature, 2); Serial.println(" C"); // temperature in degrees Celsius
Serial.print("Digital temperature value = "); Serial.print(9.*(float) Temperature/5. + 32., 2); Serial.println(" F"); // temperature in degrees Fahrenheit
Serial.print("Digital pressure value = "); Serial.print((float) Pressure, 2); Serial.println(" mbar");// pressure in millibar
Serial.print("Altitude = "); Serial.print(altitude, 2); Serial.println(" feet");
}
}
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
//Software AHRS:
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
roll *= 180.0f / PI;
//Hardware AHRS:
Yaw = atan2(2.0f * (Quat[0] * Quat[1] + Quat[3] * Quat[2]), Quat[3] * Quat[3] + Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2]);
Pitch = -asin(2.0f * (Quat[0] * Quat[2] - Quat[3] * Quat[1]));
Roll = atan2(2.0f * (Quat[3] * Quat[0] + Quat[1] * Quat[2]), Quat[3] * Quat[3] - Quat[0] * Quat[0] - Quat[1] * Quat[1] + Quat[2] * Quat[2]);
Pitch *= 180.0f / PI;
Yaw *= 180.0f / PI;
Yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
Roll *= 180.0f / PI;
// Or define output variable according to the Android system, where heading (0 to 260) is defined by the angle between the y-axis
// and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90)
// In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis
// points toward the right of the device.
//
if(SerialDebug) {
Serial.print("Software yaw, pitch, roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
Serial.print("Hardware Yaw, Pitch, Roll: ");
Serial.print(Yaw, 2);
Serial.print(", ");
Serial.print(Pitch, 2);
Serial.print(", ");
Serial.println(Roll, 2);
Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
}
/*
display.clearDisplay();
display.setCursor(0, 0); display.print(" x y z ");
display.setCursor(0, 8); display.print((int)(1000*ax));
display.setCursor(24, 8); display.print((int)(1000*ay));
display.setCursor(48, 8); display.print((int)(1000*az));
display.setCursor(72, 8); display.print("mg");
// tempCount = readACCTempData(); // Read the gyro adc values
// temperature = ((float) tempCount) / 2.0 + 23.0; // Gyro chip temperature in degrees Centigrade
// display.setCursor(64, 0); display.print(9.*temperature/5. + 32., 0); display.print("F");
display.setCursor(0, 16); display.print((int)(gx));
display.setCursor(24, 16); display.print((int)(gy));
display.setCursor(48, 16); display.print((int)(gz));
display.setCursor(66, 16); display.print("o/s");
display.setCursor(0, 24); display.print((int)(mx));
display.setCursor(24, 24); display.print((int)(my));
display.setCursor(48, 24); display.print((int)(mz));
display.setCursor(72, 24); display.print("mG");
display.setCursor(0, 32); display.print((int)(yaw));
display.setCursor(24, 32); display.print((int)(pitch));
display.setCursor(48, 32); display.print((int)(roll));
display.setCursor(66, 32); display.print("ypr");
// display.setCursor(0, 40); display.print(altitude, 0); display.print("ft");
// display.setCursor(68, 0); display.print(9.*Temperature/5. + 32., 0);
display.setCursor(42, 40); display.print((float) sumCount / (1000.*sum), 2); display.print("kHz");
display.display();
*/
digitalWrite(myLed, !digitalRead(myLed));
count = millis();
sumCount = 0;
sum = 0;
}
}
//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================
void getMres() {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 2 Gauss (00), 4 Gauss (01), 8 Gauss (10) and 12 Gauss (11)
case MFS_2G:
mRes = 2.0/32768.0;
break;
case MFS_4G:
mRes = 4.0/32768.0;
break;
case MFS_8G:
mRes = 8.0/32768.0;
break;
case MFS_12G:
mRes = 12.0/32768.0;
break;
}
}
void getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 245 DPS (00), 500 DPS (01), and 2000 DPS (11).
case GFS_245DPS:
gRes = 245.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}
void getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (000), 4 Gs (001), 6 gs (010), 8 Gs (011), and 16 gs (100).
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_6G:
aRes = 6.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
}
}
void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_A, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(LSM9DS0G_ADDRESS, 0x80 | LSM9DS0G_OUT_X_L_G, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
void readMagData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_M, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_TEMP_L_XM, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a 16-bit signed value
}
void initLSM9DS0()
{
// configure the gyroscope, enable normal mode = power on
writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG1_G, Godr << 6 | Gbw << 4 | 0x0F);
writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG4_G, Gscale << 4 | 0x80); // enable bloack data update
// configure the accelerometer-specify ODR (sample rate) selection with Aodr, enable block data update
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG1_XM, Aodr << 4 | 0x0F);
// configure the accelerometer-specify bandwidth and full-scale selection with Abw, Ascale
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG2_XM, Abw << 6 | Ascale << 3);
// enable temperature sensor, set magnetometer ODR (sample rate) and resolution mode
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG5_XM, 0x80 | Mres << 5 | Modr << 2);
// set magnetometer full scale
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG6_XM, Mscale << 5 & 0x60);
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG7_XM, 0x00); // select continuous conversion mode
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void accelgyrocalLSM9DS0(float * dest1, float * dest2)
{
uint8_t data[6] = {0, 0, 0, 0, 0, 0};
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
uint16_t samples, ii;
Serial.println("Calibrating gyro...");
// First get gyro bias
byte c = readByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G);
writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G, c | 0x40); // Enable gyro FIFO
delay(400); // Wait for change to take effect
writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_FIFO_CTRL_REG_G, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples
delay(2000); // delay 1000 milliseconds to collect FIFO samples
samples = (readByte(LSM9DS0G_ADDRESS, LSM9DS0G_FIFO_SRC_REG_G) & 0x1F); // Read number of stored samples
for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO
int16_t gyro_temp[3] = {0, 0, 0};
readBytes(LSM9DS0G_ADDRESS, 0x80 | LSM9DS0G_OUT_X_L_G, 6, &data[0]);
gyro_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO
gyro_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]);
gyro_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]);
gyro_bias[0] += (int32_t) gyro_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
gyro_bias[0] /= samples; // average the data
gyro_bias[1] /= samples;
gyro_bias[2] /= samples;
dest1[0] = (float)gyro_bias[0]*gRes; // Properly scale the data to get deg/s
dest1[1] = (float)gyro_bias[1]*gRes;
dest1[2] = (float)gyro_bias[2]*gRes;
c = readByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G);
writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_CTRL_REG5_G, c & ~0x40); //Disable gyro FIFO
delay(200);
writeByte(LSM9DS0G_ADDRESS, LSM9DS0G_FIFO_CTRL_REG_G, 0x00); // Enable gyro bypass mode
Serial.println("Calibrating accel...");
// now get the accelerometer bias
c = readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM);
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM, c | 0x40); // Enable gyro FIFO
delay(200); // Wait for change to take effect
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_FIFO_CTRL_REG, 0x20 | 0x1F); // Enable gyro FIFO stream mode and set watermark at 32 samples
delay(1000); // delay 1000 milliseconds to collect FIFO samples
samples = (readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_FIFO_SRC_REG) & 0x1F); // Read number of stored samples
for(ii = 0; ii < samples ; ii++) { // Read the gyro data stored in the FIFO
int16_t accel_temp[3] = {0, 0, 0};
readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_A, 6, &data[0]);
accel_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]); // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]);
accel_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]);
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
}
accel_bias[0] /= samples; // average the data
accel_bias[1] /= samples;
accel_bias[2] /= samples;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) (1.0/aRes);} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) (1.0/aRes);}
dest2[0] = (float)accel_bias[0]*aRes; // Properly scale the data to get g
dest2[1] = (float)accel_bias[1]*aRes;
dest2[2] = (float)accel_bias[2]*aRes;
c = readByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM);
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_CTRL_REG0_XM, c & ~0x40); //Disable accel FIFO
delay(200);
writeByte(LSM9DS0XM_ADDRESS, LSM9DS0XM_FIFO_CTRL_REG, 0x00); // Enable accel bypass mode
}
void magcalLSM9DS0(float * dest1)
{
uint8_t data[6]; // data array to hold mag x, y, z, data
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0};
int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0};
Serial.println("Mag Calibration: Wave device in a figure eight until done!");
delay(4000);
sample_count = 128;
for(ii = 0; ii < sample_count; ii++) {
int16_t mag_temp[3] = {0, 0, 0};
readBytes(LSM9DS0XM_ADDRESS, 0x80 | LSM9DS0XM_OUT_X_L_M, 6, &data[0]); // Read the six raw data registers into data array
mag_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]) ; // Form signed 16-bit integer for each sample in FIFO
mag_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]) ;
mag_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]) ;
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
delay(105); // at 10 Hz ODR, new mag data is available every 100 ms
}
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0]*mRes; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes;
dest1[2] = (float) mag_bias[2]*mRes;
/* //write biases to accelerometermagnetometer offset registers as counts);
writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_X_REG_L_M, (int16_t) mag_bias[0] & 0xFF);
writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_X_REG_H_M, ((int16_t)mag_bias[0] >> 8) & 0xFF);
writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Y_REG_L_M, (int16_t) mag_bias[1] & 0xFF);
writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Y_REG_H_M, ((int16_t)mag_bias[1] >> 8) & 0xFF);
writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Z_REG_L_M, (int16_t) mag_bias[2] & 0xFF);
writeByte(LSM9DS0M_ADDRESS, LSM9DS0M_OFFSET_Z_REG_H_M, ((int16_t)mag_bias[2] >> 8) & 0xFF);
*/
Serial.println("Mag Calibration done!");
}
// I2C communication with the MS5637 is a little different from that with the LSM9DS0and most other sensors
// For the MS5637, we write commands, and the MS5637 sends data in response, rather than directly reading
// MS5637 registers
void MS5637Reset()
{
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(MS5637_RESET); // Put reset command in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
void MS5637PromRead(uint16_t * destination)
{
uint8_t data[2] = {0,0};
for (uint8_t ii = 0; ii <8; ii++) {
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(0xA0 | ii << 1); // Put PROM address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(MS5637_ADDRESS, 2); // Read two bytes from slave PROM address
while (Wire.available()) {
data[i++] = Wire.read(); } // Put read results in the Rx buffer
destination[ii] = (uint16_t) (((uint16_t) data[0] << 8) | data[1]); // construct PROM data for return to main program
}
}
uint32_t MS5637Read(uint8_t CMD, uint8_t OSR) // temperature data read
{
uint8_t data[3] = {0,0,0};
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(CMD | OSR); // Put pressure conversion command in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
switch (OSR)
{
case ADC_256: delay(1); break; // delay for conversion to complete
case ADC_512: delay(3); break;
case ADC_1024: delay(4); break;
case ADC_2048: delay(6); break;
case ADC_4096: delay(10); break;
case ADC_8192: delay(20); break;
}
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(0x00); // Put ADC read command in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(MS5637_ADDRESS, 3); // Read three bytes from slave PROM address
while (Wire.available()) {
data[i++] = Wire.read(); } // Put read results in the Rx buffer
return (uint32_t) (((uint32_t) data[0] << 16) | (uint32_t) data[1] << 8 | data[2]); // construct PROM data for return to main program
}
unsigned char MS5637checkCRC(uint16_t * n_prom) // calculate checksum from PROM register contents
{
int cnt;
unsigned int n_rem = 0;
unsigned char n_bit;
n_prom[0] = ((n_prom[0]) & 0x0FFF); // replace CRC byte by 0 for checksum calculation
n_prom[7] = 0;
for(cnt = 0; cnt < 16; cnt++)
{
if(cnt%2==1) n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
else n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
for(n_bit = 8; n_bit > 0; n_bit--)
{
if(n_rem & 0x8000) n_rem = (n_rem<<1) ^ 0x3000;
else n_rem = (n_rem<<1);
}
}
n_rem = ((n_rem>>12) & 0x000F);
return (n_rem ^ 0x00);
}
// I2C read/write functions for the LSM9DS0and AK8963 sensors
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.requestFrom(address, 1); // Read one byte from slave register address
Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
// Wire.requestFrom(address, count); // Read bytes from slave register address
Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}
float uint32_reg_to_float (uint8_t *buf)
{
union {
uint32_t ui32;
float f;
} u;
u.ui32 = (((uint32_t)buf[0]) +
(((uint32_t)buf[1]) << 8) +
(((uint32_t)buf[2]) << 16) +
(((uint32_t)buf[3]) << 24));
return u.f;
}
void readSENtralQuatData(float * destination)
{
uint8_t rawData[16]; // x/y/z quaternion register data stored here
readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array
destination[0] = uint32_reg_to_float (&rawData[0]);
destination[1] = uint32_reg_to_float (&rawData[4]);
destination[2] = uint32_reg_to_float (&rawData[8]);
destination[3] = uint32_reg_to_float (&rawData[12]);
}
void readSENtralAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readSENtralGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readSENtralMagData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void SENtralPassThroughMode()
{
// First put SENtral in standby mode
uint8_t c = readByte(EM7180_ADDRESS, EM7180_AlgorithmControl);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01);
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
// Serial.print("c = "); Serial.println(c);
// Verify standby status
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
Serial.println("SENtral in standby mode");
// Place SENtral in pass-through mode
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01);
if(readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) {
Serial.println("SENtral in pass-through mode");
}
else {
Serial.println("ERROR! SENtral not in pass-through mode!");
}
// }
// else { Serial.println("ERROR! SENtral not in standby mode!");
// }
}
// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor
// since the address is defined by two bytes
void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data)
{
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
if(count > 128) {
count = 128;
Serial.print("Page count cannot be more than 128 bytes!");
}
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
for(uint8_t i=0; i < count; i++) {
Wire.write(dest[i]); // Put data in Tx buffer
}
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.requestFrom(address, 1); // Read one byte from slave register address
Wire.requestFrom(device_address, (size_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
// Wire.requestFrom(address, count); // Read bytes from slave register address
Wire.requestFrom(device_address, (size_t) count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}
// simple function to scan for I2C devices on the bus
void I2Cscan()
{
// scan for i2c devices
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknow error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
}