You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							195 lines
						
					
					
						
							9.2 KiB
						
					
					
				
			
		
		
	
	
							195 lines
						
					
					
						
							9.2 KiB
						
					
					
				| #include "Arduino.h" | |
|  | |
| // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" | |
| // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) | |
| // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute | |
| // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. | |
| // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms | |
| // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! | |
|         void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) | |
|         { | |
|             float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability | |
|             float norm; | |
|             float hx, hy, _2bx, _2bz; | |
|             float s1, s2, s3, s4; | |
|             float qDot1, qDot2, qDot3, qDot4; | |
|  | |
|             // Auxiliary variables to avoid repeated arithmetic | |
|             float _2q1mx; | |
|             float _2q1my; | |
|             float _2q1mz; | |
|             float _2q2mx; | |
|             float _4bx; | |
|             float _4bz; | |
|             float _2q1 = 2.0f * q1; | |
|             float _2q2 = 2.0f * q2; | |
|             float _2q3 = 2.0f * q3; | |
|             float _2q4 = 2.0f * q4; | |
|             float _2q1q3 = 2.0f * q1 * q3; | |
|             float _2q3q4 = 2.0f * q3 * q4; | |
|             float q1q1 = q1 * q1; | |
|             float q1q2 = q1 * q2; | |
|             float q1q3 = q1 * q3; | |
|             float q1q4 = q1 * q4; | |
|             float q2q2 = q2 * q2; | |
|             float q2q3 = q2 * q3; | |
|             float q2q4 = q2 * q4; | |
|             float q3q3 = q3 * q3; | |
|             float q3q4 = q3 * q4; | |
|             float q4q4 = q4 * q4; | |
|  | |
|             // Normalise accelerometer measurement | |
|             norm = sqrt(ax * ax + ay * ay + az * az); | |
|             if (norm == 0.0f) return; // handle NaN | |
|             norm = 1.0f/norm; | |
|             ax *= norm; | |
|             ay *= norm; | |
|             az *= norm; | |
|  | |
|             // Normalise magnetometer measurement | |
|             norm = sqrt(mx * mx + my * my + mz * mz); | |
|             if (norm == 0.0f) return; // handle NaN | |
|             norm = 1.0f/norm; | |
|             mx *= norm; | |
|             my *= norm; | |
|             mz *= norm; | |
|  | |
|             // Reference direction of Earth's magnetic field | |
|             _2q1mx = 2.0f * q1 * mx; | |
|             _2q1my = 2.0f * q1 * my; | |
|             _2q1mz = 2.0f * q1 * mz; | |
|             _2q2mx = 2.0f * q2 * mx; | |
|             hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; | |
|             hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; | |
|             _2bx = sqrt(hx * hx + hy * hy); | |
|             _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; | |
|             _4bx = 2.0f * _2bx; | |
|             _4bz = 2.0f * _2bz; | |
|  | |
|             // Gradient decent algorithm corrective step | |
|             s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); | |
|             s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); | |
|             s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); | |
|             s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); | |
|             norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4);    // normalise step magnitude | |
|             norm = 1.0f/norm; | |
|             s1 *= norm; | |
|             s2 *= norm; | |
|             s3 *= norm; | |
|             s4 *= norm; | |
|  | |
|             // Compute rate of change of quaternion | |
|             qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; | |
|             qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; | |
|             qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; | |
|             qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; | |
|  | |
|             // Integrate to yield quaternion | |
|             q1 += qDot1 * deltat; | |
|             q2 += qDot2 * deltat; | |
|             q3 += qDot3 * deltat; | |
|             q4 += qDot4 * deltat; | |
|             norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4);    // normalise quaternion | |
|             norm = 1.0f/norm; | |
|             q[0] = q1 * norm; | |
|             q[1] = q2 * norm; | |
|             q[2] = q3 * norm; | |
|             q[3] = q4 * norm; | |
|  | |
|         } | |
|    | |
|    | |
|    | |
|  // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and | |
|  // measured ones.  | |
|         void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) | |
|         { | |
|             float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3];   // short name local variable for readability | |
|             float norm; | |
|             float hx, hy, bx, bz; | |
|             float vx, vy, vz, wx, wy, wz; | |
|             float ex, ey, ez; | |
|             float pa, pb, pc; | |
|  | |
|             // Auxiliary variables to avoid repeated arithmetic | |
|             float q1q1 = q1 * q1; | |
|             float q1q2 = q1 * q2; | |
|             float q1q3 = q1 * q3; | |
|             float q1q4 = q1 * q4; | |
|             float q2q2 = q2 * q2; | |
|             float q2q3 = q2 * q3; | |
|             float q2q4 = q2 * q4; | |
|             float q3q3 = q3 * q3; | |
|             float q3q4 = q3 * q4; | |
|             float q4q4 = q4 * q4;    | |
|  | |
|             // Normalise accelerometer measurement | |
|             norm = sqrt(ax * ax + ay * ay + az * az); | |
|             if (norm == 0.0f) return; // handle NaN | |
|             norm = 1.0f / norm;        // use reciprocal for division | |
|             ax *= norm; | |
|             ay *= norm; | |
|             az *= norm; | |
|  | |
|             // Normalise magnetometer measurement | |
|             norm = sqrt(mx * mx + my * my + mz * mz); | |
|             if (norm == 0.0f) return; // handle NaN | |
|             norm = 1.0f / norm;        // use reciprocal for division | |
|             mx *= norm; | |
|             my *= norm; | |
|             mz *= norm; | |
|  | |
|             // Reference direction of Earth's magnetic field | |
|             hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); | |
|             hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); | |
|             bx = sqrt((hx * hx) + (hy * hy)); | |
|             bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); | |
|  | |
|             // Estimated direction of gravity and magnetic field | |
|             vx = 2.0f * (q2q4 - q1q3); | |
|             vy = 2.0f * (q1q2 + q3q4); | |
|             vz = q1q1 - q2q2 - q3q3 + q4q4; | |
|             wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); | |
|             wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); | |
|             wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3);   | |
|  | |
|             // Error is cross product between estimated direction and measured direction of gravity | |
|             ex = (ay * vz - az * vy) + (my * wz - mz * wy); | |
|             ey = (az * vx - ax * vz) + (mz * wx - mx * wz); | |
|             ez = (ax * vy - ay * vx) + (mx * wy - my * wx); | |
|             if (Ki > 0.0f) | |
|             { | |
|                 eInt[0] += ex;      // accumulate integral error | |
|                 eInt[1] += ey; | |
|                 eInt[2] += ez; | |
|             } | |
|             else | |
|             { | |
|                 eInt[0] = 0.0f;     // prevent integral wind up | |
|                 eInt[1] = 0.0f; | |
|                 eInt[2] = 0.0f; | |
|             } | |
|  | |
|             // Apply feedback terms | |
|             gx = gx + Kp * ex + Ki * eInt[0]; | |
|             gy = gy + Kp * ey + Ki * eInt[1]; | |
|             gz = gz + Kp * ez + Ki * eInt[2]; | |
|  | |
|             // Integrate rate of change of quaternion | |
|             pa = q2; | |
|             pb = q3; | |
|             pc = q4; | |
|             q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); | |
|             q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); | |
|             q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); | |
|             q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); | |
|  | |
|             // Normalise quaternion | |
|             norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); | |
|             norm = 1.0f / norm; | |
|             q[0] = q1 * norm; | |
|             q[1] = q2 * norm; | |
|             q[2] = q3 * norm; | |
|             q[3] = q4 * norm; | |
|   | |
|         }
 | |
| 
 |