You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

225 lines
6.7 KiB

/*
* lis2mdl.c
* The LIS2MDL is a low power magnetometer, here used as 3 DoF in a 10 DoF
* absolute orientation solution.
*
* Created on: Jan 18, 2021
* Author: Daniel Peter Chokola
*
* Adapted From:
* EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly
* by: Kris Winer
* 09/23/2017 Copyright Tlera Corporation
*
* Library may be used freely and without limit with attribution.
*/
/* Includes */
#include <stdint.h>
#include "lis2mdl.h"
/* Private Global Variables */
static uint8_t _intPin;
static float _mRes;
/* Function Prototypes */
static void lis2mdl_write_byte(uint8_t address, uint8_t subAddress,
uint8_t data);
static uint8_t lis2mdl_read_byte(uint8_t address, uint8_t subAddress);
static void lis2mdl_read(uint8_t address, uint8_t subAddress, uint8_t count,
uint8_t *dest);
/* Function Definitions */
lis2mdl_new(uint8_t pin)
{
pinMode(pin, INPUT);
_intPin = pin;
}
uint8_t lis2mdl_chip_id_get()
{
uint8_t c = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_WHO_AM_I);
return c;
}
void lis2mdl_reset()
{
// reset device
uint8_t temp = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A);
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x20); // Set bit 5 to 1 to reset LIS2MDL
delay(1);
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, temp | 0x40); // Set bit 6 to 1 to boot LIS2MDL
delay(100); // Wait for all registers to reset
}
void lis2mdl_init(uint8_t MODR)
{
// enable temperature compensation (bit 7 == 1), continuous mode (bits 0:1 == 00)
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_A, 0x80 | MODR << 2);
// enable low pass filter (bit 0 == 1), set to ODR/4
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_B, 0x01);
// enable data ready on interrupt pin (bit 0 == 1), enable block data read (bit 4 == 1)
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, 0x01 | 0x10);
}
uint8_t lis2mdl_status()
{
// Read the status register of the altimeter
uint8_t temp = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_STATUS_REG);
return temp;
}
void lis2mdl_data_get(int16_t *destination)
{
uint8_t rawData[6]; // x/y/z mag register data stored here
lis2mdl_read_bytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_OUTX_L_REG), 8,
&rawData[0]); // Read the 6 raw data registers into data array
destination[0] = ((int16_t) rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t) rawData[3] << 8) | rawData[2];
destination[2] = ((int16_t) rawData[5] << 8) | rawData[4];
}
int16_t lis2mdl_temp_get()
{
uint8_t rawData[2]; // x/y/z mag register data stored here
lis2mdl_read_bytes(LIS2MDL_ADDRESS, (0x80 | LIS2MDL_TEMP_OUT_L_REG), 2,
&rawData[0]); // Read the 8 raw data registers into data array
int16_t temp = ((int16_t) rawData[1] << 8) | rawData[0]; // Turn the MSB and LSB into a signed 16-bit value
return temp;
}
void lis2mdl_offset_bias(float *dest1, float *dest2)
{
int32_t mag_bias[3] = { 0, 0, 0 }, mag_scale[3] = { 0, 0, 0 };
int16_t mag_max[3] = { -32767, -32767, -32767 }, mag_min[3] =
{ 32767, 32767, 32767 }, mag_temp[3] = { 0, 0, 0 };
float _mRes = 0.0015f;
Serial.println(
"Calculate mag offset bias: move all around to sample the complete response surface!");
delay(4000);
for(int ii = 0; ii < 4000; ii++)
{
lis2mdl_data_get(mag_temp);
for(int jj = 0; jj < 3; jj++)
{
if(mag_temp[jj] > mag_max[jj])
mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj])
mag_min[jj] = mag_temp[jj];
}
delay(12);
}
_mRes = 0.0015f; // fixed sensitivity
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0] * _mRes; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1] * _mRes;
dest1[2] = (float) mag_bias[2] * _mRes;
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0]) / 2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1]) / 2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2]) / 2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0f;
dest2[0] = avg_rad / ((float) mag_scale[0]);
dest2[1] = avg_rad / ((float) mag_scale[1]);
dest2[2] = avg_rad / ((float) mag_scale[2]);
Serial.println("Mag Calibration done!");
}
void lis2mdl_self_test()
{
int16_t temp[3] = { 0, 0, 0 };
float magTest[3] = { 0., 0., 0. };
float magNom[3] = { 0., 0., 0. };
int32_t sum[3] = { 0, 0, 0 };
float _mRes = 0.0015f;
// first, get average response with self test disabled
for(int ii = 0; ii < 50; ii++)
{
lis2mdl_data_get(temp);
sum[0] += temp[0];
sum[1] += temp[1];
sum[2] += temp[2];
delay(50);
}
magNom[0] = (float) sum[0] / 50.0f;
magNom[1] = (float) sum[1] / 50.0f;
magNom[2] = (float) sum[2] / 50.0f;
uint8_t c = lis2mdl_read_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C);
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c | 0x02); // enable self test
delay(100); // let mag respond
sum[0] = 0;
sum[1] = 0;
sum[2] = 0;
for(int ii = 0; ii < 50; ii++)
{
lis2mdl_data_get(temp);
sum[0] += temp[0];
sum[1] += temp[1];
sum[2] += temp[2];
delay(50);
}
magTest[0] = (float) sum[0] / 50.0f;
magTest[1] = (float) sum[1] / 50.0f;
magTest[2] = (float) sum[2] / 50.0f;
lis2mdl_write_byte(LIS2MDL_ADDRESS, LIS2MDL_CFG_REG_C, c); // return to previous settings/normal mode
delay(100); // let mag respond
Serial.println("Mag Self Test:");
Serial.print("Mx results:");
Serial.print((magTest[0] - magNom[0]) * _mRes * 1000.0);
Serial.println(" mG");
Serial.print("My results:");
Serial.println((magTest[0] - magNom[0]) * _mRes * 1000.0);
Serial.print("Mz results:");
Serial.println((magTest[1] - magNom[1]) * _mRes * 1000.0);
Serial.println("Should be between 15 and 500 mG");
delay(2000); // give some time to read the screen
}
// I2C read/write functions for the LIS2MDL
static void lis2mdl_write_byte(uint8_t address, uint8_t subAddress,
uint8_t data)
{
uint8_t temp[2];
temp[0] = subAddress;
temp[1] = data;
Wire.transfer(address, &temp[0], 2, NULL, 0);
}
static uint8_t lis2mdl_read_byte(uint8_t address, uint8_t subAddress)
{
uint8_t temp[1];
Wire.transfer(address, &subAddress, 1, &temp[0], 1);
return temp[0];
}
static void lis2mdl_read(uint8_t address, uint8_t subAddress, uint8_t count,
uint8_t *dest)
{
Wire.transfer(address, &subAddress, 1, dest, count);
}