You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

301 lines
8.9 KiB

/*
* lsm6dsm.c
* The LSM6DSM is a sensor hub with embedded accelerometer and gyroscope, here
* used as 6 DoF in a 10 DoF absolute orientation solution.
*
* Created on: Jan 18, 2021
* Author: Daniel Peter Chokola
*
* Adapted From:
* EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly
* by: Kris Winer
* 09/23/2017 Copyright Tlera Corporation
*
* Library may be used freely and without limit with attribution.
*/
/* Includes */
#include <stdint.h>
#include "lsm6dsm.h"
/* Private Global Variables */
static uint8_t _intPin1;
static uint8_t _intPin2;
static float _aRes;
static float _gRes;
/* Function Prototypes */
static void lsm6dsm_write_byte(uint8_t address, uint8_t subAddress,
uint8_t data);
static uint8_t lsm6dsm_read_byte(uint8_t address, uint8_t subAddress);
static void lsm6dsm_read(uint8_t address, uint8_t subAddress, uint8_t count,
uint8_t *dest);
/* Function Definitions */
lsm6dsm_new(uint8_t pin1, uint8_t pin2)
{
pinMode(pin1, INPUT);
_intPin1 = pin1;
pinMode(pin2, INPUT);
_intPin2 = pin2;
}
uint8_t lsm6dsm_chip_id_get()
{
uint8_t c = lsm6dsm_read_byte(LSM6DSM_ADDRESS, LSM6DSM_WHO_AM_I);
return c;
}
float lsm6dsm_ares_get(uint8_t ascale)
{
switch(ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
_aRes = 2.0f / 32768.0f;
return _aRes;
break;
case AFS_4G:
_aRes = 4.0f / 32768.0f;
return _aRes;
break;
case AFS_8G:
_aRes = 8.0f / 32768.0f;
return _aRes;
break;
case AFS_16G:
_aRes = 16.0f / 32768.0f;
return _aRes;
break;
}
}
float lsm6dsm_gres_get(uint8_t gscale)
{
switch(gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
case GFS_245DPS:
_gRes = 245.0f / 32768.0f;
return _gRes;
break;
case GFS_500DPS:
_gRes = 500.0f / 32768.0f;
return _gRes;
break;
case GFS_1000DPS:
_gRes = 1000.0f / 32768.0f;
return _gRes;
break;
case GFS_2000DPS:
_gRes = 2000.0f / 32768.0f;
return _gRes;
break;
}
}
void lsm6dsm_reset()
{
// reset device
uint8_t temp = lsm6dsm_read_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C);
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x01); // Set bit 0 to 1 to reset LSM6DSM
delay(100); // Wait for all registers to reset
}
void lsm6dsm_init(uint8_t ascale, uint8_t gscale, uint8_t AODR, uint8_t GODR)
{
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL1_XL,
AODR << 4 | ascale << 2);
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL2_G,
GODR << 4 | gscale << 2);
uint8_t temp = lsm6dsm_read_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C);
// enable block update (bit 6 = 1), auto-increment registers (bit 2 = 1)
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL3_C, temp | 0x40 | 0x04);
// by default, interrupts active HIGH, push pull, little endian data
// (can be changed by writing to bits 5, 4, and 1, resp to above register)
// enable accel LP2 (bit 7 = 1), set LP2 tp ODR/9 (bit 6 = 1), enable input_composite (bit 3) for low noise
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL8_XL, 0x80 | 0x40 | 0x08);
// interrupt handling
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_DRDY_PULSE_CFG, 0x80); // latch interrupt until data read
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_INT1_CTRL, 0x40); // enable significant motion interrupts on INT1
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_INT2_CTRL, 0x03); // enable accel/gyro data ready interrupts on INT2
}
void lsm6dsm_selfTest()
{
int16_t temp[7] = { 0, 0, 0, 0, 0, 0, 0 };
int16_t accelPTest[3] = { 0, 0, 0 }, accelNTest[3] = { 0, 0, 0 },
gyroPTest[3] = { 0, 0, 0 }, gyroNTest[3] = { 0, 0, 0 };
int16_t accelNom[3] = { 0, 0, 0 }, gyroNom[3] = { 0, 0, 0 };
readData(temp);
accelNom[0] = temp[4];
accelNom[1] = temp[5];
accelNom[2] = temp[6];
gyroNom[0] = temp[1];
gyroNom[1] = temp[2];
gyroNom[2] = temp[3];
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x01); // positive accel self test
delay(100); // let accel respond
readData(temp);
accelPTest[0] = temp[4];
accelPTest[1] = temp[5];
accelPTest[2] = temp[6];
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x03); // negative accel self test
delay(100); // let accel respond
readData(temp);
accelNTest[0] = temp[4];
accelNTest[1] = temp[5];
accelNTest[2] = temp[6];
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x04); // positive gyro self test
delay(100); // let gyro respond
readData(temp);
gyroPTest[0] = temp[1];
gyroPTest[1] = temp[2];
gyroPTest[2] = temp[3];
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x0C); // negative gyro self test
delay(100); // let gyro respond
readData(temp);
gyroNTest[0] = temp[1];
gyroNTest[1] = temp[2];
gyroNTest[2] = temp[3];
lsm6dsm_write_byte(LSM6DSM_ADDRESS, LSM6DSM_CTRL5_C, 0x00); // normal mode
delay(100); // let accel and gyro respond
Serial.println("Accel Self Test:");
Serial.print("+Ax results:");
Serial.print((accelPTest[0] - accelNom[0]) * _aRes * 1000.0);
Serial.println(" mg");
Serial.print("-Ax results:");
Serial.println((accelNTest[0] - accelNom[0]) * _aRes * 1000.0);
Serial.print("+Ay results:");
Serial.println((accelPTest[1] - accelNom[1]) * _aRes * 1000.0);
Serial.print("-Ay results:");
Serial.println((accelNTest[1] - accelNom[1]) * _aRes * 1000.0);
Serial.print("+Az results:");
Serial.println((accelPTest[2] - accelNom[2]) * _aRes * 1000.0);
Serial.print("-Az results:");
Serial.println((accelNTest[2] - accelNom[2]) * _aRes * 1000.0);
Serial.println("Should be between 90 and 1700 mg");
Serial.println("Gyro Self Test:");
Serial.print("+Gx results:");
Serial.print((gyroPTest[0] - gyroNom[0]) * _gRes);
Serial.println(" dps");
Serial.print("-Gx results:");
Serial.println((gyroNTest[0] - gyroNom[0]) * _gRes);
Serial.print("+Gy results:");
Serial.println((gyroPTest[1] - gyroNom[1]) * _gRes);
Serial.print("-Gy results:");
Serial.println((gyroNTest[1] - gyroNom[1]) * _gRes);
Serial.print("+Gz results:");
Serial.println((gyroPTest[2] - gyroNom[2]) * _gRes);
Serial.print("-Gz results:");
Serial.println((gyroNTest[2] - gyroNom[2]) * _gRes);
Serial.println("Should be between 20 and 80 dps");
delay(2000);
}
void lsm6dsm_offsetBias(float *dest1, float *dest2)
{
int16_t temp[7] = { 0, 0, 0, 0, 0, 0, 0 };
int32_t sum[7] = { 0, 0, 0, 0, 0, 0, 0 };
Serial.println(
"Calculate accel and gyro offset biases: keep sensor flat and motionless!");
delay(4000);
for(int ii = 0; ii < 128; ii++)
{
readData(temp);
sum[1] += temp[1];
sum[2] += temp[2];
sum[3] += temp[3];
sum[4] += temp[4];
sum[5] += temp[5];
sum[6] += temp[6];
delay(50);
}
dest1[0] = sum[1] * _gRes / 128.0f;
dest1[1] = sum[2] * _gRes / 128.0f;
dest1[2] = sum[3] * _gRes / 128.0f;
dest2[0] = sum[4] * _aRes / 128.0f;
dest2[1] = sum[5] * _aRes / 128.0f;
dest2[2] = sum[6] * _aRes / 128.0f;
if(dest2[0] > 0.8f)
{
dest2[0] -= 1.0f;
} // Remove gravity from the x-axis accelerometer bias calculation
if(dest2[0] < -0.8f)
{
dest2[0] += 1.0f;
} // Remove gravity from the x-axis accelerometer bias calculation
if(dest2[1] > 0.8f)
{
dest2[1] -= 1.0f;
} // Remove gravity from the y-axis accelerometer bias calculation
if(dest2[1] < -0.8f)
{
dest2[1] += 1.0f;
} // Remove gravity from the y-axis accelerometer bias calculation
if(dest2[2] > 0.8f)
{
dest2[2] -= 1.0f;
} // Remove gravity from the z-axis accelerometer bias calculation
if(dest2[2] < -0.8f)
{
dest2[2] += 1.0f;
} // Remove gravity from the z-axis accelerometer bias calculation
}
void lsm6dsm_read_data(int16_t *destination)
{
uint8_t rawdata[14]; // x/y/z accel register data stored here
lsm6dsm_read(LSM6DSM_ADDRESS, LSM6DSM_OUT_TEMP_L, 14, &rawdata[0]); // Read the 14 raw data registers into data array
destination[0] = ((int16_t) rawdata[1] << 8) | rawdata[0]; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t) rawdata[3] << 8) | rawdata[2];
destination[2] = ((int16_t) rawdata[5] << 8) | rawdata[4];
destination[3] = ((int16_t) rawdata[7] << 8) | rawdata[6];
destination[4] = ((int16_t) rawdata[9] << 8) | rawdata[8];
destination[5] = ((int16_t) rawdata[11] << 8) | rawdata[10];
destination[6] = ((int16_t) rawdata[13] << 8) | rawdata[12];
}
// I2C read/write functions for the LSM6DSM
static void lsm6dsm_write_byte(uint8_t address, uint8_t subAddress,
uint8_t data)
{
uint8_t temp[2];
temp[0] = subAddress;
temp[1] = data;
Wire.transfer(address, &temp[0], 2, NULL, 0);
}
static uint8_t lsm6dsm_read_byte(uint8_t address, uint8_t subAddress)
{
uint8_t temp[1];
Wire.transfer(address, &subAddress, 1, &temp[0], 1);
return temp[0];
}
static void lsm6dsm_read(uint8_t address, uint8_t subAddress, uint8_t count,
uint8_t *dest)
{
Wire.transfer(address, &subAddress, 1, dest, count);
}