You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1904 lines
92 KiB

/* EM7180_MPU9250_MS5637_t3 Basic Example Code
by: Kris Winer
date: September 11, 2015
license: Beerware - Use this code however you'd like. If you
find it useful you can buy me a beer some time.
The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors,
in this case the MPU9250 (with embedded MPU9250 + AK8963C), and does sensor fusion with quaternions as its output. The SENtral loads firmware from the
on-board M24512DFC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus,
and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and
heading/pitch/roll, if selected.
This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
Mahony filter algorithms to compare with the hardware sensor fusion results.
Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master,
the MPU9250 9-axis motion sensor (accel/gyro/mag) as slave, an MS5637 pressure/temperature sensor as slave, and an M24512DFC
512kbit (64 kByte) EEPROM as slave all connected via I2C. The SENtral can use the pressure data in the sensor fusion
and there is a driver for the MS5637 in the SENtral firmware. Also, like the MAX21100, the SENtral
can be toggled into a bypass mode where the pressure sensor (and EEPROM and MPU9250) may be read directly by the
Teensy 3.1 host microcontroller. If the read rate is infrequent enough (2 Hz is sufficient since pressure and temperature
do not change very fast), then the sensor fusion rate is not significantly affected.
This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h.
The MS5637 is a simple but high resolution pressure sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
only 1 microAmp. The choice will depend on the application.
SDA and SCL should have external pull-up resistors (to 3.3V).
4k7 resistors are on the EM7180+MPU9250+MS5637+M24512DRC Mini Add-On board for Teensy 3.1.
Hardware setup:
EM7180 Mini Add-On ------- Teensy 3.1
VDD ---------------------- 3.3V
SDA ----------------------- 17
SCL ----------------------- 16
GND ---------------------- GND
INT------------------------ 8
Note: All the sensors n this board are I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library.
Because the sensors are not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
*/
//#include "Wire.h"
#include <i2c_t3.h>
#include <SPI.h>
#include <Adafruit_GFX.h>
#include <Adafruit_PCD8544.h>
// Using NOKIA 5110 monochrome 84 x 48 pixel display
// pin 7 - Serial clock out (SCLK)
// pin 6 - Serial data out (DIN)
// pin 5 - Data/Command select (D/C)
// pin 3 - LCD chip select (SCE)
// pin 4 - LCD reset (RST)
Adafruit_PCD8544 display = Adafruit_PCD8544(7, 6, 5, 3, 4);
// See MS5637-02BA03 Low Voltage Barometric Pressure Sensor Data Sheet
#define MS5637_RESET 0x1E
#define MS5637_CONVERT_D1 0x40
#define MS5637_CONVERT_D2 0x50
#define MS5637_ADC_READ 0x00
// See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in
// above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
//
//Magnetometer Registers
#define AK8963_ADDRESS 0x0C
#define WHO_AM_I_AK8963 0x00 // should return 0x48
#define INFO 0x01
#define AK8963_ST1 0x02 // data ready status bit 0
#define AK8963_XOUT_L 0x03 // data
#define AK8963_XOUT_H 0x04
#define AK8963_YOUT_L 0x05
#define AK8963_YOUT_H 0x06
#define AK8963_ZOUT_L 0x07
#define AK8963_ZOUT_H 0x08
#define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2
#define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0
#define AK8963_ASTC 0x0C // Self test control
#define AK8963_I2CDIS 0x0F // I2C disable
#define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value
#define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value
#define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value
#define SELF_TEST_X_GYRO 0x00
#define SELF_TEST_Y_GYRO 0x01
#define SELF_TEST_Z_GYRO 0x02
/*#define X_FINE_GAIN 0x03 // [7:0] fine gain
#define Y_FINE_GAIN 0x04
#define Z_FINE_GAIN 0x05
#define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
#define XA_OFFSET_L_TC 0x07
#define YA_OFFSET_H 0x08
#define YA_OFFSET_L_TC 0x09
#define ZA_OFFSET_H 0x0A
#define ZA_OFFSET_L_TC 0x0B */
#define SELF_TEST_X_ACCEL 0x0D
#define SELF_TEST_Y_ACCEL 0x0E
#define SELF_TEST_Z_ACCEL 0x0F
#define SELF_TEST_A 0x10
#define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope
#define XG_OFFSET_L 0x14
#define YG_OFFSET_H 0x15
#define YG_OFFSET_L 0x16
#define ZG_OFFSET_H 0x17
#define ZG_OFFSET_L 0x18
#define SMPLRT_DIV 0x19
#define CONFIG 0x1A
#define GYRO_CONFIG 0x1B
#define ACCEL_CONFIG 0x1C
#define ACCEL_CONFIG2 0x1D
#define LP_ACCEL_ODR 0x1E
#define WOM_THR 0x1F
#define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
#define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
#define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
#define FIFO_EN 0x23
#define I2C_MST_CTRL 0x24
#define I2C_SLV0_ADDR 0x25
#define I2C_SLV0_REG 0x26
#define I2C_SLV0_CTRL 0x27
#define I2C_SLV1_ADDR 0x28
#define I2C_SLV1_REG 0x29
#define I2C_SLV1_CTRL 0x2A
#define I2C_SLV2_ADDR 0x2B
#define I2C_SLV2_REG 0x2C
#define I2C_SLV2_CTRL 0x2D
#define I2C_SLV3_ADDR 0x2E
#define I2C_SLV3_REG 0x2F
#define I2C_SLV3_CTRL 0x30
#define I2C_SLV4_ADDR 0x31
#define I2C_SLV4_REG 0x32
#define I2C_SLV4_DO 0x33
#define I2C_SLV4_CTRL 0x34
#define I2C_SLV4_DI 0x35
#define I2C_MST_STATUS 0x36
#define INT_PIN_CFG 0x37
#define INT_ENABLE 0x38
#define DMP_INT_STATUS 0x39 // Check DMP interrupt
#define INT_STATUS 0x3A
#define ACCEL_XOUT_H 0x3B
#define ACCEL_XOUT_L 0x3C
#define ACCEL_YOUT_H 0x3D
#define ACCEL_YOUT_L 0x3E
#define ACCEL_ZOUT_H 0x3F
#define ACCEL_ZOUT_L 0x40
#define TEMP_OUT_H 0x41
#define TEMP_OUT_L 0x42
#define GYRO_XOUT_H 0x43
#define GYRO_XOUT_L 0x44
#define GYRO_YOUT_H 0x45
#define GYRO_YOUT_L 0x46
#define GYRO_ZOUT_H 0x47
#define GYRO_ZOUT_L 0x48
#define EXT_SENS_DATA_00 0x49
#define EXT_SENS_DATA_01 0x4A
#define EXT_SENS_DATA_02 0x4B
#define EXT_SENS_DATA_03 0x4C
#define EXT_SENS_DATA_04 0x4D
#define EXT_SENS_DATA_05 0x4E
#define EXT_SENS_DATA_06 0x4F
#define EXT_SENS_DATA_07 0x50
#define EXT_SENS_DATA_08 0x51
#define EXT_SENS_DATA_09 0x52
#define EXT_SENS_DATA_10 0x53
#define EXT_SENS_DATA_11 0x54
#define EXT_SENS_DATA_12 0x55
#define EXT_SENS_DATA_13 0x56
#define EXT_SENS_DATA_14 0x57
#define EXT_SENS_DATA_15 0x58
#define EXT_SENS_DATA_16 0x59
#define EXT_SENS_DATA_17 0x5A
#define EXT_SENS_DATA_18 0x5B
#define EXT_SENS_DATA_19 0x5C
#define EXT_SENS_DATA_20 0x5D
#define EXT_SENS_DATA_21 0x5E
#define EXT_SENS_DATA_22 0x5F
#define EXT_SENS_DATA_23 0x60
#define MOT_DETECT_STATUS 0x61
#define I2C_SLV0_DO 0x63
#define I2C_SLV1_DO 0x64
#define I2C_SLV2_DO 0x65
#define I2C_SLV3_DO 0x66
#define I2C_MST_DELAY_CTRL 0x67
#define SIGNAL_PATH_RESET 0x68
#define MOT_DETECT_CTRL 0x69
#define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
#define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
#define PWR_MGMT_2 0x6C
#define DMP_BANK 0x6D // Activates a specific bank in the DMP
#define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
#define DMP_REG 0x6F // Register in DMP from which to read or to which to write
#define DMP_REG_1 0x70
#define DMP_REG_2 0x71
#define FIFO_COUNTH 0x72
#define FIFO_COUNTL 0x73
#define FIFO_R_W 0x74
#define WHO_AM_I_MPU9250 0x75 // Should return 0x71
#define XA_OFFSET_H 0x77
#define XA_OFFSET_L 0x78
#define YA_OFFSET_H 0x7A
#define YA_OFFSET_L 0x7B
#define ZA_OFFSET_H 0x7D
#define ZA_OFFSET_L 0x7E
// EM7180 SENtral register map
// see http://www.emdeveloper.com/downloads/7180/EMSentral_EM7180_Register_Map_v1_3.pdf
//
#define EM7180_QX 0x00 // this is a 32-bit normalized floating point number read from registers 0x00-03
#define EM7180_QY 0x04 // this is a 32-bit normalized floating point number read from registers 0x04-07
#define EM7180_QZ 0x08 // this is a 32-bit normalized floating point number read from registers 0x08-0B
#define EM7180_QW 0x0C // this is a 32-bit normalized floating point number read from registers 0x0C-0F
#define EM7180_QTIME 0x10 // this is a 16-bit unsigned integer read from registers 0x10-11
#define EM7180_MX 0x12 // int16_t from registers 0x12-13
#define EM7180_MY 0x14 // int16_t from registers 0x14-15
#define EM7180_MZ 0x16 // int16_t from registers 0x16-17
#define EM7180_MTIME 0x18 // uint16_t from registers 0x18-19
#define EM7180_AX 0x1A // int16_t from registers 0x1A-1B
#define EM7180_AY 0x1C // int16_t from registers 0x1C-1D
#define EM7180_AZ 0x1E // int16_t from registers 0x1E-1F
#define EM7180_ATIME 0x20 // uint16_t from registers 0x20-21
#define EM7180_GX 0x22 // int16_t from registers 0x22-23
#define EM7180_GY 0x24 // int16_t from registers 0x24-25
#define EM7180_GZ 0x26 // int16_t from registers 0x26-27
#define EM7180_GTIME 0x28 // uint16_t from registers 0x28-29
#define EM7180_Baro 0x2A // start of two-byte MS5637 pressure data, 16-bit signed interger
#define EM7180_BaroTIME 0x2C // start of two-byte MS5637 pressure timestamp, 16-bit unsigned
#define EM7180_Temp 0x2E // start of two-byte MS5637 temperature data, 16-bit signed interger
#define EM7180_TempTIME 0x30 // start of two-byte MS5637 temperature timestamp, 16-bit unsigned
#define EM7180_QRateDivisor 0x32 // uint8_t
#define EM7180_EnableEvents 0x33
#define EM7180_HostControl 0x34
#define EM7180_EventStatus 0x35
#define EM7180_SensorStatus 0x36
#define EM7180_SentralStatus 0x37
#define EM7180_AlgorithmStatus 0x38
#define EM7180_FeatureFlags 0x39
#define EM7180_ParamAcknowledge 0x3A
#define EM7180_SavedParamByte0 0x3B
#define EM7180_SavedParamByte1 0x3C
#define EM7180_SavedParamByte2 0x3D
#define EM7180_SavedParamByte3 0x3E
#define EM7180_ActualMagRate 0x45
#define EM7180_ActualAccelRate 0x46
#define EM7180_ActualGyroRate 0x47
#define EM7180_ActualBaroRate 0x48
#define EM7180_ActualTempRate 0x49
#define EM7180_ErrorRegister 0x50
#define EM7180_AlgorithmControl 0x54
#define EM7180_MagRate 0x55
#define EM7180_AccelRate 0x56
#define EM7180_GyroRate 0x57
#define EM7180_BaroRate 0x58
#define EM7180_TempRate 0x59
#define EM7180_LoadParamByte0 0x60
#define EM7180_LoadParamByte1 0x61
#define EM7180_LoadParamByte2 0x62
#define EM7180_LoadParamByte3 0x63
#define EM7180_ParamRequest 0x64
#define EM7180_ROMVersion1 0x70
#define EM7180_ROMVersion2 0x71
#define EM7180_RAMVersion1 0x72
#define EM7180_RAMVersion2 0x73
#define EM7180_ProductID 0x90
#define EM7180_RevisionID 0x91
#define EM7180_RunStatus 0x92
#define EM7180_UploadAddress 0x94 // uint16_t registers 0x94 (MSB)-5(LSB)
#define EM7180_UploadData 0x96
#define EM7180_CRCHost 0x97 // uint32_t from registers 0x97-9A
#define EM7180_ResetRequest 0x9B
#define EM7180_PassThruStatus 0x9E
#define EM7180_PassThruControl 0xA0
#define EM7180_ACC_LPF_BW 0x5B //Register GP36
#define EM7180_GYRO_LPF_BW 0x5C //Register GP37
#define EM7180_BARO_LPF_BW 0x5D //Register GP38
#define EM7180_ADDRESS 0x28 // Address of the EM7180 SENtral sensor hub
#define M24512DFM_DATA_ADDRESS 0x50 // Address of the 500 page M24512DFM EEPROM data buffer, 1024 bits (128 8-bit bytes) per page
#define M24512DFM_IDPAGE_ADDRESS 0x58 // Address of the single M24512DFM lockable EEPROM ID page
#define MPU9250_ADDRESS 0x68 // Device address when ADO = 0
#define AK8963_ADDRESS 0x0C // Address of magnetometer
#define MS5637_ADDRESS 0x76 // Address of altimeter
#define SerialDebug true // set to true to get Serial output for debugging
// Set initial input parameters
enum Ascale {
AFS_2G = 0,
AFS_4G,
AFS_8G,
AFS_16G
};
enum Gscale {
GFS_250DPS = 0,
GFS_500DPS,
GFS_1000DPS,
GFS_2000DPS
};
enum Mscale {
MFS_14BITS = 0, // 0.6 mG per LSB
MFS_16BITS // 0.15 mG per LSB
};
#define ADC_256 0x00 // define pressure and temperature conversion rates
#define ADC_512 0x02
#define ADC_1024 0x04
#define ADC_2048 0x06
#define ADC_4096 0x08
#define ADC_8192 0x0A
#define ADC_D1 0x40
#define ADC_D2 0x50
// Specify sensor full scale
uint8_t OSR = ADC_8192; // set pressure amd temperature oversample rate
//
// Specify sensor full scale
uint8_t Gscale = GFS_250DPS;
uint8_t Ascale = AFS_2G;
uint8_t Mscale = MFS_16BITS; // Choose either 14-bit or 16-bit magnetometer resolution
uint8_t Mmode = 0x02; // 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
// Pin definitions
int intPin = 8; // These can be changed, 2 and 3 are the Arduinos ext int pins
int myLed = 13; // LED on the Teensy 3.1
// MS5637 definitions
uint16_t Pcal[8]; // calibration constants from MS5637 PROM registers
unsigned char nCRC; // calculated check sum to ensure PROM integrity
uint32_t D1 = 0, D2 = 0; // raw MS5637 pressure and temperature data
double dT, OFFSET, SENS, T2, OFFSET2, SENS2; // First order and second order corrections for raw S5637 temperature and pressure data
// MPU9250 variables
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
float Quat[4] = {0, 0, 0, 0}; // quaternion data register
float magCalibration[3] = {0, 0, 0}; // Factory mag calibration and mag bias
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}, magScale[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, mag
int16_t tempCount, rawPressure, rawTemperature; // temperature raw count output
double Temperature, Pressure; // stores MS5637 pressures sensor pressure and temperature
int32_t rawPress, rawTemp; // pressure and temperature raw count output for MS5637
float temperature, pressure, altitude; // Stores the MPU9250 internal chip temperature in degrees Celsius
float SelfTest[6]; // holds results of gyro and accelerometer self test
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
// There is a tradeoff in the beta parameter between accuracy and response speed.
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
#define Ki 0.0f
uint32_t delt_t = 0, count = 0, sumCount = 0; // used to control display output rate
float pitch, yaw, roll, Yaw, Pitch, Roll;
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
uint32_t Now = 0; // used to calculate integration interval
uint8_t param[4]; // used for param transfer
uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
bool passThru = false;
;
void setup()
{
// Wire.begin();
// TWBR = 12; // 400 kbit/sec I2C speed for Pro Mini
// Setup for Master mode, pins 18/19, external pullups, 400kHz for Teensy 3.1
Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400);
delay(5000);
Serial.begin(38400);
// Set up the interrupt pin, its set as active high, push-pull
pinMode(intPin, INPUT);
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
display.begin(); // Initialize the display
display.setContrast(40); // Set the contrast
// Start device display with ID of sensor
display.clearDisplay();
display.setTextSize(2);
display.setCursor(0,0); display.print("MPU9250");
display.setTextSize(1);
display.setCursor(0, 20); display.print("9-DOF 16-bit");
display.setCursor(0, 30); display.print("motion sensor");
display.setCursor(20,40); display.print("60 ug LSB");
display.display();
delay(1000);
// Set up for data display
display.setTextSize(1); // Set text size to normal, 2 is twice normal etc.
display.setTextColor(BLACK); // Set pixel color; 1 on the monochrome screen
display.clearDisplay(); // clears the screen and buffer
I2Cscan(); // should detect SENtral at 0x28
// Read SENtral device information
uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1);
uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2);
Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609");
uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1);
uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2);
Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2);
uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID);
Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80");
uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID);
Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02");
delay(1000); // give some time to read the screen
// Check which sensors can be detected by the EM7180
uint8_t featureflag = readByte(EM7180_ADDRESS, EM7180_FeatureFlags);
if(featureflag & 0x01) Serial.println("A barometer is installed");
if(featureflag & 0x02) Serial.println("A humidity sensor is installed");
if(featureflag & 0x04) Serial.println("A temperature sensor is installed");
if(featureflag & 0x08) Serial.println("A custom sensor is installed");
if(featureflag & 0x10) Serial.println("A second custom sensor is installed");
if(featureflag & 0x20) Serial.println("A third custom sensor is installed");
delay(1000); // give some time to read the screen
// Check SENtral status, make sure EEPROM upload of firmware was accomplished
byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!");
int count = 0;
while(!STAT) {
writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01);
delay(500);
count++;
STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!");
if(count > 10) break;
}
if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!");
delay(1000); // give some time to read the screen
// Set up the SENtral as sensor bus in normal operating mode
if(!passThru) {
// Enter EM7180 initialized state
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers
//Setup LPF bandwidth (BEFORE setting ODR's)
writeByte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, 0x03); // 41Hz
writeByte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, 0x03); // 41Hz
// Set accel/gyro/mage desired ODR rates
writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 100 Hz
writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x64); // 100 Hz
writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x14); // 200/10 Hz
writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x14); // 200/10 Hz
writeByte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | 0x32); // set enable bit and set Baro rate to 25 Hz
// writeByte(EM7180_ADDRESS, EM7180_TempRate, 0x19); // set enable bit and set rate to 25 Hz
// Configure operating mode
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data
// Enable interrupt to host upon certain events
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10),
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07);
// Enable EM7180 run mode
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode
delay(100);
// EM7180 parameter adjustments
Serial.println("Beginning Parameter Adjustments");
// Read sensor default FS values from parameter space
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process
byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4A)) {
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]);
EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]);
Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT");
Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4B)) {
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]);
Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm
//Disable stillness mode
EM7180_set_integer_param (0x49, 0x00);
//Write desired sensor full scale ranges to the EM7180
EM7180_set_mag_acc_FS (0x3E8, 0x08); // 1000 uT, 8 g
EM7180_set_gyro_FS (0x7D0); // 2000 dps
// Read sensor new FS values from parameter space
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4A)) {
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]);
EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]);
Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT");
Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4B)) {
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]);
Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm
// Read EM7180 status
uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus);
if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode");
uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
if(algoStatus & 0x01) Serial.println(" EM7180 standby status");
if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow");
if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode");
if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed");
if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected");
if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data");
uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!");
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus);
if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset");
if(eventStatus & 0x02) Serial.println(" EM7180 Error");
if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result");
if(eventStatus & 0x08) Serial.println(" EM7180 new mag result");
if(eventStatus & 0x10) Serial.println(" EM7180 new accel result");
if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result");
delay(1000); // give some time to read the screen
// Check sensor status
uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus);
Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus);
if(sensorStatus & 0x01) Serial.print("Magnetometer not acknowledging!");
if(sensorStatus & 0x02) Serial.print("Accelerometer not acknowledging!");
if(sensorStatus & 0x04) Serial.print("Gyro not acknowledging!");
if(sensorStatus & 0x10) Serial.print("Magnetometer ID not recognized!");
if(sensorStatus & 0x20) Serial.print("Accelerometer ID not recognized!");
if(sensorStatus & 0x40) Serial.print("Gyro ID not recognized!");
Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz");
Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz");
Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz");
Serial.print("Actual BaroRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualBaroRate)); Serial.println(" Hz");
// Serial.print("Actual TempRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualTempRate)); Serial.println(" Hz");
delay(1000); // give some time to read the screen
}
// If pass through mode desired, set it up here
if(passThru) {
// Put EM7180 SENtral into pass-through mode
SENtralPassThroughMode();
delay(1000);
I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages)
// Read first page of EEPROM
uint8_t data[128];
M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data);
Serial.println("EEPROM Signature Byte");
Serial.print(data[0], HEX); Serial.println(" Should be 0x2A");
Serial.print(data[1], HEX); Serial.println(" Should be 0x65");
for (int i = 0; i < 128; i++) {
Serial.print(data[i], HEX); Serial.print(" ");
}
// Set up the interrupt pin, its set as active high, push-pull
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);
if (c == 0x71) // WHO_AM_I should always be 0x71
{
Serial.println("MPU9250 is online...");
MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);
// get sensor resolutions, only need to do this once
getAres();
getGres();
getMres();
Serial.println(" Calibrate gyro and accel");
accelgyrocalMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
display.clearDisplay();
display.setCursor(0, 0); display.print("MPU9250 bias");
display.setCursor(0, 8); display.print(" x y z ");
display.setCursor(0, 16); display.print((int)(1000*accelBias[0]));
display.setCursor(24, 16); display.print((int)(1000*accelBias[1]));
display.setCursor(48, 16); display.print((int)(1000*accelBias[2]));
display.setCursor(72, 16); display.print("mg");
display.setCursor(0, 24); display.print(gyroBias[0], 1);
display.setCursor(24, 24); display.print(gyroBias[1], 1);
display.setCursor(48, 24); display.print(gyroBias[2], 1);
display.setCursor(66, 24); display.print("o/s");
display.display();
delay(1000);
initMPU9250();
Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages)
// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);
display.clearDisplay();
display.setCursor(20,0); display.print("AK8963");
display.setCursor(0,10); display.print("I AM");
display.setCursor(0,20); display.print(d, HEX);
display.setCursor(0,30); display.print("I Should Be");
display.setCursor(0,40); display.print(0x48, HEX);
display.display();
delay(1000);
// Get magnetometer calibration from AK8963 ROM
initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode...."); // Initialize device for active mode read of magnetometer
magcalMPU9250(magBias, magScale);
Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]);
Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data
if(SerialDebug) {
// Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);
}
display.clearDisplay();
display.setCursor(20,0); display.print("AK8963");
display.setCursor(0,10); display.print("ASAX "); display.setCursor(50,10); display.print(magCalibration[0], 2);
display.setCursor(0,20); display.print("ASAY "); display.setCursor(50,20); display.print(magCalibration[1], 2);
display.setCursor(0,30); display.print("ASAZ "); display.setCursor(50,30); display.print(magCalibration[2], 2);
display.display();
delay(1000);
// Reset the MS5637 pressure sensor
MS5637Reset();
delay(100);
Serial.println("MS5637 pressure sensor reset...");
// Read PROM data from MS5637 pressure sensor
MS5637PromRead(Pcal);
Serial.println("PROM dta read:");
Serial.print("C0 = "); Serial.println(Pcal[0]);
unsigned char refCRC = Pcal[0] >> 12;
Serial.print("C1 = "); Serial.println(Pcal[1]);
Serial.print("C2 = "); Serial.println(Pcal[2]);
Serial.print("C3 = "); Serial.println(Pcal[3]);
Serial.print("C4 = "); Serial.println(Pcal[4]);
Serial.print("C5 = "); Serial.println(Pcal[5]);
Serial.print("C6 = "); Serial.println(Pcal[6]);
nCRC = MS5637checkCRC(Pcal); //calculate checksum to ensure integrity of MS5637 calibration data
Serial.print("Checksum = "); Serial.print(nCRC); Serial.print(" , should be "); Serial.println(refCRC);
display.clearDisplay();
display.setCursor(20,0); display.print("MS5637");
display.setCursor(0,10); display.print("CRC is "); display.setCursor(50,10); display.print(nCRC);
display.setCursor(0,20); display.print("Should be "); display.setCursor(50,30); display.print(refCRC);
display.display();
delay(1000);
}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
}
}
void loop()
{
if(!passThru) {
// Check event status register, way to chech data ready by polling rather than interrupt
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register
// Check for errors
if(eventStatus & 0x02) { // error detected, what is it?
uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister);
if(!errorStatus) {
Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus);
if(errorStatus == 0x11) Serial.print("Magnetometer failure!");
if(errorStatus == 0x12) Serial.print("Accelerometer failure!");
if(errorStatus == 0x14) Serial.print("Gyro failure!");
if(errorStatus == 0x21) Serial.print("Magnetometer initialization failure!");
if(errorStatus == 0x22) Serial.print("Accelerometer initialization failure!");
if(errorStatus == 0x24) Serial.print("Gyro initialization failure!");
if(errorStatus == 0x30) Serial.print("Math error!");
if(errorStatus == 0x80) Serial.print("Invalid sample rate!");
}
// Handle errors ToDo
}
// if no errors, see if new data is ready
if(eventStatus & 0x10) { // new acceleration data available
readSENtralAccelData(accelCount);
// Now we'll calculate the accleration value into actual g's
ax = (float)accelCount[0]*0.000488; // get actual g value
ay = (float)accelCount[1]*0.000488;
az = (float)accelCount[2]*0.000488;
}
if(eventStatus & 0x20) { // new gyro data available
readSENtralGyroData(gyroCount);
// Now we'll calculate the gyro value into actual dps's
gx = (float)gyroCount[0]*0.153; // get actual dps value
gy = (float)gyroCount[1]*0.153;
gz = (float)gyroCount[2]*0.153;
}
if(eventStatus
// Now we'll calculate the mag value into actual G's
mx = (float)magCount[0]*0.305176; // get actual G value
my = (float)magCount[1]*0.305176;
mz = (float)magCount[2]*0.305176;
}
if(eventStatus & 0x04) { // new quaternion data available
readSENtralQuatData(Quat);
// }
// get MS5637 pressure
if(eventStatus & 0x40) { // new baro data available
// Serial.println("new Baro data!");
rawPressure = readSENtralBaroData();
pressure = (float)rawPressure*0.01f +1013.25f; // pressure in mBar
// get MS5637 temperature
rawTemperature = readSENtralTempData();
temperature = (float) rawTemperature*0.01; // temperature in degrees C
}
}
if(passThru) {
// If intPin goes high, all data registers have new data
// if (digitalRead(intACC2)) { // On interrupt, read data
readAccelData(accelCount); // Read the x/y/z adc values
// Now we'll calculate the acceleration value into actual g's
ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)accelCount[1]*aRes - accelBias[1];
az = (float)accelCount[2]*aRes - accelBias[2];
// }
// if (digitalRead(intGYRO2)) { // On interrupt, read data
readGyroData(gyroCount); // Read the x/y/z adc values
// Calculate the gyro value into actual degrees per second
gx = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set
gy = (float)gyroCount[1]*gRes;
gz = (float)gyroCount[2]*gRes;
// }
// if (digitalRead(intDRDYM)) { // On interrupt, read data
readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];
// mx *= magScale[0];
// my *= magScale[1];
// mz *= magScale[2];
// }
}
// keep track of rates
Now = micros();
deltat = ((Now - lastUpdate)/1000000.0f); // set integration time by time elapsed since last filter update
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
// Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer;
// the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro!
// We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
// For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
// in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
// if(passThru)MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
// Serial print and/or display at 0.5 s rate independent of data rates
delt_t = millis() - count;
if (delt_t > 500) { // update LCD once per half-second independent of read rate
if(SerialDebug) {
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)mx);
Serial.print(" my = "); Serial.print( (int)my);
Serial.print(" mz = "); Serial.print( (int)mz); Serial.println(" mG");
Serial.println("Software quaternions:");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
Serial.println("Hardware quaternions:");
Serial.print("Q0 = "); Serial.print(Quat[0]);
Serial.print(" Qx = "); Serial.print(Quat[1]);
Serial.print(" Qy = "); Serial.print(Quat[2]);
Serial.print(" Qz = "); Serial.println(Quat[3]);
}
if(passThru) {
// tempCount = readTempData(); // Read the gyro adc values
// temperature = ((float) tempCount) / 333.87 + 21.0; // Gyro chip temperature in degrees Centigrade
// Print temperature in degrees Centigrade
// Serial.print("Gyro temperature is "); Serial.print(temperature, 1); Serial.println(" degrees C"); // Print T values to tenths of s degree C
D1 = MS5637Read(ADC_D1, OSR); // get raw pressure value
D2 = MS5637Read(ADC_D2, OSR); // get raw temperature value
dT = D2 - Pcal[5]*pow(2,8); // calculate temperature difference from reference
OFFSET = Pcal[2]*pow(2, 17) + dT*Pcal[4]/pow(2,6);
SENS = Pcal[1]*pow(2,16) + dT*Pcal[3]/pow(2,7);
Temperature = (2000 + (dT*Pcal[6])/pow(2, 23))/100; // First-order Temperature in degrees Centigrade
//
// Second order corrections
if(Temperature > 20)
{
T2 = 5*dT*dT/pow(2, 38); // correction for high temperatures
OFFSET2 = 0;
SENS2 = 0;
}
if(Temperature < 20) // correction for low temperature
{
T2 = 3*dT*dT/pow(2, 33);
OFFSET2 = 61*(100*Temperature - 2000)*(100*Temperature - 2000)/16;
SENS2 = 29*(100*Temperature - 2000)*(100*Temperature - 2000)/16;
}
if(Temperature < -15) // correction for very low temperature
{
OFFSET2 = OFFSET2 + 17*(100*Temperature + 1500)*(100*Temperature + 1500);
SENS2 = SENS2 + 9*(100*Temperature + 1500)*(100*Temperature + 1500);
}
// End of second order corrections
//
Temperature = Temperature - T2/100;
OFFSET = OFFSET - OFFSET2;
SENS = SENS - SENS2;
Pressure = (((D1*SENS)/pow(2, 21) - OFFSET)/pow(2, 15))/100; // Pressure in mbar or kPa
}
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
//Software AHRS:
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360
roll *= 180.0f / PI;
//Hardware AHRS:
Yaw = atan2(2.0f * (Quat[0] * Quat[1] + Quat[3] * Quat[2]), Quat[3] * Quat[3] + Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2]);
Pitch = -asin(2.0f * (Quat[0] * Quat[2] - Quat[3] * Quat[1]));
Roll = atan2(2.0f * (Quat[3] * Quat[0] + Quat[1] * Quat[2]), Quat[3] * Quat[3] - Quat[0] * Quat[0] - Quat[1] * Quat[1] + Quat[2] * Quat[2]);
Pitch *= 180.0f / PI;
Yaw *= 180.0f / PI;
Yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(Yaw < 0) Yaw += 360.0f ; // Ensure yaw stays between 0 and 360
Roll *= 180.0f / PI;
// Or define output variable according to the Android system, where heading (0 to 260) is defined by the angle between the y-axis
// and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90)
// In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis
// points toward the right of the device.
//
if(SerialDebug) {
Serial.print("Software yaw, pitch, roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
Serial.print("Hardware Yaw, Pitch, Roll: ");
Serial.print(Yaw, 2);
Serial.print(", ");
Serial.print(Pitch, 2);
Serial.print(", ");
Serial.println(Roll, 2);
Serial.println("MS5637:");
Serial.print("Altimeter temperature = ");
if(passThru) Serial.print( (float) Temperature, 2);
if(!passThru) Serial.print( temperature, 2);
Serial.println(" C"); // temperature in degrees Celsius
Serial.print("Altimeter temperature = ");
if(passThru) Serial.print(9.*((float)Temperature)/5. + 32., 2);
if(!passThru) Serial.print(9.*temperature/5. + 32., 2);
Serial.println(" F"); // temperature in degrees Fahrenheit
Serial.print("Altimeter pressure = ");
if(passThru) Serial.print((float)Pressure, 2);
if(!passThru) Serial.print(pressure, 2);
Serial.println(" mbar");// pressure in millibar
if(passThru) altitude = 145366.45f*(1.0f - pow((((float)Pressure)/1013.25f), 0.190284f));
if(!passThru) altitude = 145366.45f*(1.0f - pow(((pressure)/1013.25f), 0.190284f));
Serial.print("Altitude = ");
Serial.print(altitude, 2);
Serial.println(" feet");
Serial.println(" ");
Serial.print("rate = "); Serial.print((float)sumCount/sum, 2); Serial.println(" Hz");
}
digitalWrite(myLed, !digitalRead(myLed));
count = millis();
sumCount = 0;
sum = 0;
}
}
//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================
float uint32_reg_to_float (uint8_t *buf)
{
union {
uint32_t ui32;
float f;
} u;
u.ui32 = (((uint32_t)buf[0]) +
(((uint32_t)buf[1]) << 8) +
(((uint32_t)buf[2]) << 16) +
(((uint32_t)buf[3]) << 24));
return u.f;
}
void float_to_bytes (float param_val, uint8_t *buf) {
union {
float f;
uint8_t comp[sizeof(float)];
} u;
u.f = param_val;
for (uint8_t i=0; i < sizeof(float); i++) {
buf[i] = u.comp[i];
}
//Convert to LITTLE ENDIAN
for (uint8_t i=0; i < sizeof(float); i++) {
buf[i] = buf[(sizeof(float)-1) - i];
}
}
void EM7180_set_gyro_FS (uint16_t gyro_fs) {
uint8_t bytes[4], STAT;
bytes[0] = gyro_fs & (0xFF);
bytes[1] = (gyro_fs >> 8) & (0xFF);
bytes[2] = 0x00;
bytes[3] = 0x00;
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT==0xCB)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) {
uint8_t bytes[4], STAT;
bytes[0] = mag_fs & (0xFF);
bytes[1] = (mag_fs >> 8) & (0xFF);
bytes[2] = acc_fs & (0xFF);
bytes[3] = (acc_fs >> 8) & (0xFF);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT==0xCA)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_integer_param (uint8_t param, uint32_t param_val) {
uint8_t bytes[4], STAT;
bytes[0] = param_val & (0xFF);
bytes[1] = (param_val >> 8) & (0xFF);
bytes[2] = (param_val >> 16) & (0xFF);
bytes[3] = (param_val >> 24) & (0xFF);
param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT==param)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_float_param (uint8_t param, float param_val) {
uint8_t bytes[4], STAT;
float_to_bytes (param_val, &bytes[0]);
param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT==param)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void readSENtralQuatData(float * destination)
{
uint8_t rawData[16]; // x/y/z quaternion register data stored here
readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array
destination[0] = uint32_reg_to_float (&rawData[0]);
destination[1] = uint32_reg_to_float (&rawData[4]);
destination[2] = uint32_reg_to_float (&rawData[8]);
destination[3] = uint32_reg_to_float (&rawData[12]); // SENtral stores quats as qx, qy, qz, q0!
}
void readSENtralAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readSENtralGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readSENtralMagData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void getMres() {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
case MFS_14BITS:
mRes = 10.*4912./8190.; // Proper scale to return milliGauss
break;
case MFS_16BITS:
mRes = 10.*4912./32760.0; // Proper scale to return milliGauss
break;
}
}
void getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case GFS_250DPS:
gRes = 250.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_1000DPS:
gRes = 1000.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}
void getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
}
}
void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void readMagData(int16_t * destination)
{
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
}
int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value
}
void initAK8963(float * destination)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(20);
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(20);
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(20);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
delay(20);
}
void initMPU9250()
{
// wake up device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x02; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
// Set accelerometer full-scale range configuration
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void accelgyrocalMPU9250(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
// else use the internal oscillator, bits 2:0 = 001
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFE;
data[1] = (accel_bias_reg[0]) & 0xFE;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFE;
data[3] = (accel_bias_reg[1]) & 0xFE;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFE;
data[5] = (accel_bias_reg[2]) & 0xFE;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
/* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
*/
// Output scaled accelerometer biases for display in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
void magcalMPU9250(float * dest1, float * dest2)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {0xFF, 0xFF, 0xFF}, mag_min[3] = {0x7F, 0x7F, 0x7F}, mag_temp[3] = {0, 0, 0};
Serial.println("Mag Calibration: Wave device in a figure eight until done!");
delay(4000);
if(Mmode == 0x02) sample_count = 128;
if(Mmode == 0x06) sample_count = 1500;
for(ii = 0; ii < sample_count; ii++) {
readMagData(mag_temp); // Read the mag data
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
if(Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms
if(Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms
}
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0]; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];
dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;
dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);
Serial.println("Mag Calibration done!");
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
float factoryTrim[6];
uint8_t FS = 0;
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
}
}
int16_t readSENtralBaroData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_Baro, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
}
int16_t readSENtralTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_Temp, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
}
void SENtralPassThroughMode()
{
// First put SENtral in standby mode
uint8_t c = readByte(EM7180_ADDRESS, EM7180_AlgorithmControl);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01);
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
// Serial.print("c = "); Serial.println(c);
// Verify standby status
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
Serial.println("SENtral in standby mode");
// Place SENtral in pass-through mode
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01);
if(readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) {
Serial.println("SENtral in pass-through mode");
}
else {
Serial.println("ERROR! SENtral not in pass-through mode!");
}
}
// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor
// since the address is defined by two bytes
void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data)
{
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
if(count > 128) {
count = 128;
Serial.print("Page count cannot be more than 128 bytes!");
}
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
for(uint8_t i=0; i < count; i++) {
Wire.write(dest[i]); // Put data in Tx buffer
}
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.requestFrom(address, 1); // Read one byte from slave register address
Wire.requestFrom(device_address, (size_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
// Wire.requestFrom(address, count); // Read bytes from slave register address
Wire.requestFrom(device_address, (size_t) count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}
// I2C communication with the MS5637 is a little different from that with the MPU9250 and most other sensors
// For the MS5637, we write commands, and the MS5637 sends data in response, rather than directly reading
// MS5637 registers
void MS5637Reset()
{
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(MS5637_RESET); // Put reset command in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
void MS5637PromRead(uint16_t * destination)
{
uint8_t data[2] = {0,0};
for (uint8_t ii = 0; ii < 7; ii++) {
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(0xA0 | ii << 1); // Put PROM address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(MS5637_ADDRESS, 2); // Read two bytes from slave PROM address
while (Wire.available()) {
data[i++] = Wire.read(); } // Put read results in the Rx buffer
destination[ii] = (uint16_t) (((uint16_t) data[0] << 8) | data[1]); // construct PROM data for return to main program
}
}
uint32_t MS5637Read(uint8_t CMD, uint8_t OSR) // temperature data read
{
uint8_t data[3] = {0,0,0};
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(CMD | OSR); // Put pressure conversion command in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
switch (OSR)
{
case ADC_256: delay(1); break; // delay for conversion to complete
case ADC_512: delay(3); break;
case ADC_1024: delay(4); break;
case ADC_2048: delay(6); break;
case ADC_4096: delay(10); break;
case ADC_8192: delay(20); break;
}
Wire.beginTransmission(MS5637_ADDRESS); // Initialize the Tx buffer
Wire.write(0x00); // Put ADC read command in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(MS5637_ADDRESS, 3); // Read three bytes from slave PROM address
while (Wire.available()) {
data[i++] = Wire.read(); } // Put read results in the Rx buffer
return (uint32_t) (((uint32_t) data[0] << 16) | (uint32_t) data[1] << 8 | data[2]); // construct PROM data for return to main program
}
unsigned char MS5637checkCRC(uint16_t * n_prom) // calculate checksum from PROM register contents
{
int cnt;
unsigned int n_rem = 0;
unsigned char n_bit;
n_prom[0] = ((n_prom[0]) & 0x0FFF); // replace CRC byte by 0 for checksum calculation
n_prom[7] = 0;
for(cnt = 0; cnt < 16; cnt++)
{
if(cnt%2==1) n_rem ^= (unsigned short) ((n_prom[cnt>>1]) & 0x00FF);
else n_rem ^= (unsigned short) (n_prom[cnt>>1]>>8);
for(n_bit = 8; n_bit > 0; n_bit--)
{
if(n_rem & 0x8000) n_rem = (n_rem<<1) ^ 0x3000;
else n_rem = (n_rem<<1);
}
}
n_rem = ((n_rem>>12) & 0x000F);
return (n_rem ^ 0x00);
}
// simple function to scan for I2C devices on the bus
void I2Cscan()
{
// scan for i2c devices
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknow error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
}
// I2C read/write functions for the MPU9250 and AK8963 sensors
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.requestFrom(address, 1); // Read one byte from slave register address
Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
// Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
// Wire.requestFrom(address, count); // Read bytes from slave register address
Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address
while (Wire.available()) {
dest[i++] = Wire.read(); } // Put read results in the Rx buffer
}