You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1768 lines
80 KiB

/* EM7180_MPU9250_BMP280_M24512DFC Basic Example Code
by: Kris Winer
date: September 11, 2015
license: Beerware - Use this code however you'd like. If you
find it useful you can buy me a beer some time.
The EM7180 SENtral sensor hub is not a motion sensor, but rather takes raw sensor data from a variety of motion sensors,
in this case the MPU9250 (with embedded MPU9250 + AK8963C), and does sensor fusion with quaternions as its output. The SENtral loads firmware from the
on-board M24512DRC 512 kbit EEPROM upon startup, configures and manages the sensors on its dedicated master I2C bus,
and outputs scaled sensor data (accelerations, rotation rates, and magnetic fields) as well as quaternions and
heading/pitch/roll, if selected.
This sketch demonstrates basic EM7180 SENtral functionality including parameterizing the register addresses, initializing the sensor,
getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to
allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and
Mahony filter algorithms to compare with the hardware sensor fusion results.
Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
This sketch is specifically for the Teensy 3.1 Mini Add-On shield with the EM7180 SENtral sensor hub as master,
the MPU9250 9-axis motion sensor (accel/gyro/mag) as slave, a BMP280 pressure/temperature sensor, and an M24512DRC
512kbit (64 kByte) EEPROM as slave all connected via I2C. The SENtral can use the pressure data in the sensor fusion
yet and there is a driver for the BMP280 in the SENtral firmware.
This sketch uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h.
The BMP280 is a simple but high resolution pressure sensor, which can be used in its high resolution
mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
only 1 microAmp. The choice will depend on the application.
SDA and SCL should have external pull-up resistors (to 3.3V).
4k7 resistors are on the EM7180+MPU9250+BMP280+M24512DRC Mini Add-On board for Teensy 3.1.
Hardware setup:
EM7180 Mini Add-On ------- Teensy 3.1
VDD ---------------------- 3.3V
SDA ----------------------- 17
SCL ----------------------- 16
GND ---------------------- GND
INT------------------------ 8
Note: All the sensors n this board are I2C sensor and uses the Teensy 3.1 i2c_t3.h Wire library.
Because the sensors are not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
*/
#include "Arduino.h"
#include "Globals.h"
#include <i2c_t3.h>
#include <SPI.h>
#define SerialDebug true
//#define SerialDebug false
bool passThru = false;
void setup()
{
// Setup for Master mode, pins 16/17, external pullups, 400kHz for Teensy 3.1
Wire.begin(I2C_MASTER, 0x00, I2C_PINS_16_17, I2C_PULLUP_EXT, I2C_RATE_400);
delay(100);
// Read Acc offset info
//eeprom->readGlobalSet();
delay(100);
Serial.begin(115200);
delay(5000);
// Set up the interrupt pin, its set as active high, push-pull
pinMode(myLed, OUTPUT);
digitalWrite(myLed, LOW);
// should detect SENtral at 0x28
I2Cscan();
// Read SENtral device information
uint16_t ROM1 = readByte(EM7180_ADDRESS, EM7180_ROMVersion1);
uint16_t ROM2 = readByte(EM7180_ADDRESS, EM7180_ROMVersion2);
Serial.print("EM7180 ROM Version: 0x"); Serial.print(ROM1, HEX); Serial.println(ROM2, HEX); Serial.println("Should be: 0xE609");
uint16_t RAM1 = readByte(EM7180_ADDRESS, EM7180_RAMVersion1);
uint16_t RAM2 = readByte(EM7180_ADDRESS, EM7180_RAMVersion2);
Serial.print("EM7180 RAM Version: 0x"); Serial.print(RAM1); Serial.println(RAM2);
uint8_t PID = readByte(EM7180_ADDRESS, EM7180_ProductID);
Serial.print("EM7180 ProductID: 0x"); Serial.print(PID, HEX); Serial.println(" Should be: 0x80");
uint8_t RID = readByte(EM7180_ADDRESS, EM7180_RevisionID);
Serial.print("EM7180 RevisionID: 0x"); Serial.print(RID, HEX); Serial.println(" Should be: 0x02");
// Give some time to read the screen
delay(1000);
// Check which sensors can be detected by the EM7180
uint8_t featureflag = readByte(EM7180_ADDRESS, EM7180_FeatureFlags);
if(featureflag & 0x01) Serial.println("A barometer is installed");
if(featureflag & 0x02) Serial.println("A humidity sensor is installed");
if(featureflag & 0x04) Serial.println("A temperature sensor is installed");
if(featureflag & 0x08) Serial.println("A custom sensor is installed");
if(featureflag & 0x10) Serial.println("A second custom sensor is installed");
if(featureflag & 0x20) Serial.println("A third custom sensor is installed");
// Give some time to read the screen
delay(1000);
// Check SENtral status, make sure EEPROM upload of firmware was accomplished
byte STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!");
int count = 0;
while(!STAT)
{
writeByte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01);
delay(500);
count++;
STAT = (readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01);
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) Serial.println("EEPROM detected on the sensor bus!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) Serial.println("EEPROM uploaded config file!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) Serial.println("EEPROM CRC incorrect!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) Serial.println("EM7180 in initialized state!");
if(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) Serial.println("No EEPROM detected!");
if(count > 10) break;
}
if(!(readByte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) Serial.println("EEPROM upload successful!");
// Take user input to choose Warm Start or not...
// "1" from the keboard is ASCII "1" which gives integer value 49
// "0" from the keboard is ASCII "0" which gives integer value 48
Serial.println("Send '1' for Warm Start, '0' for no Warm Start");
serial_input = Serial.read();
while(!(serial_input == 49) && !(serial_input == 48))
{
serial_input = Serial.read();
delay(500);
}
if(serial_input == 49)
{
warm_start = 1;
} else
{
warm_start = 0;
}
if(warm_start)
{
Serial.println("!!!Warm Start active!!!");
// Put the Sentral in pass-thru mode
WS_PassThroughMode();
// Fetch the WarmStart data from the M24512DFM I2C EEPROM
readSenParams();
// Take Sentral out of pass-thru mode and re-start algorithm
WS_Resume();
} else
{
Serial.println("***No Warm Start***");
}
// Reset Sentral after
// Give some time to read the screen
delay(1000);
// Set up the SENtral as sensor bus in normal operating mode
if(!passThru)
{
// Set SENtral in initialized state to configure registers
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00);
// Insert Acc Cal upload here when the time comes...
// Force initialize
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01);
// Load Warm Start parameters
if(warm_start)
{
EM7180_set_WS_params();
}
// Set SENtral in initialized state to configure registers
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x00);
//Setup LPF bandwidth (BEFORE setting ODR's)
writeByte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, 0x03); // 41 Hz
writeByte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, 0x03); // 42 Hz
// Set accel/gyro/mage desired ODR rates
writeByte(EM7180_ADDRESS, EM7180_QRateDivisor, 0x02); // 100 Hz
writeByte(EM7180_ADDRESS, EM7180_MagRate, 0x64); // 100 Hz
writeByte(EM7180_ADDRESS, EM7180_AccelRate, 0x14); // 200/10 Hz
writeByte(EM7180_ADDRESS, EM7180_GyroRate, 0x14); // 200/10 Hz
writeByte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | 0x32); // set enable bit and set Baro rate to 25 Hz
// Configure operating mode
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data
// Enable interrupt to host upon certain events
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10),
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
writeByte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07);
// Enable EM7180 run mode
writeByte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode
delay(100);
// EM7180 parameter adjustments
Serial.println("Beginning Parameter Adjustments");
// Read sensor default FS values from parameter space
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process
byte param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4A))
{
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]);
EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]);
Serial.print("Magnetometer Default Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT");
Serial.print("Accelerometer Default Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4B))
{
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]);
Serial.print("Gyroscope Default Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm
//Disable stillness mode
EM7180_set_integer_param (0x49, 0x00);
//Write desired sensor full scale ranges to the EM7180
EM7180_set_mag_acc_FS (0x3E8, 0x08); // 1000 uT, 8 g
EM7180_set_gyro_FS (0x7D0); // 2000 dps
// Read sensor new FS values from parameter space
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4A))
{
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_mag_fs = ((int16_t)(param[1]<<8) | param[0]);
EM7180_acc_fs = ((int16_t)(param[3]<<8) | param[2]);
Serial.print("Magnetometer New Full Scale Range: +/-"); Serial.print(EM7180_mag_fs); Serial.println("uT");
Serial.print("Accelerometer New Full Scale Range: +/-"); Serial.print(EM7180_acc_fs); Serial.println("g");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(param_xfer==0x4B))
{
param_xfer = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
param[0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
param[1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
param[2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
param[3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
EM7180_gyro_fs = ((int16_t)(param[1]<<8) | param[0]);
Serial.print("Gyroscope New Full Scale Range: +/-"); Serial.print(EM7180_gyro_fs); Serial.println("dps");
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm
// Read EM7180 status
uint8_t runStatus = readByte(EM7180_ADDRESS, EM7180_RunStatus);
if(runStatus & 0x01) Serial.println(" EM7180 run status = normal mode");
uint8_t algoStatus = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
if(algoStatus & 0x01) Serial.println(" EM7180 standby status");
if(algoStatus & 0x02) Serial.println(" EM7180 algorithm slow");
if(algoStatus & 0x04) Serial.println(" EM7180 in stillness mode");
if(algoStatus & 0x08) Serial.println(" EM7180 mag calibration completed");
if(algoStatus & 0x10) Serial.println(" EM7180 magnetic anomaly detected");
if(algoStatus & 0x20) Serial.println(" EM7180 unreliable sensor data");
uint8_t passthruStatus = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
if(passthruStatus & 0x01) Serial.print(" EM7180 in passthru mode!");
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus);
if(eventStatus & 0x01) Serial.println(" EM7180 CPU reset");
if(eventStatus & 0x02) Serial.println(" EM7180 Error");
if(eventStatus & 0x04) Serial.println(" EM7180 new quaternion result");
if(eventStatus & 0x08) Serial.println(" EM7180 new mag result");
if(eventStatus & 0x10) Serial.println(" EM7180 new accel result");
if(eventStatus & 0x20) Serial.println(" EM7180 new gyro result");
// Give some time to read the screen
delay(1000);
// Check sensor status
uint8_t sensorStatus = readByte(EM7180_ADDRESS, EM7180_SensorStatus);
Serial.print(" EM7180 sensor status = "); Serial.println(sensorStatus);
if(sensorStatus & 0x01) Serial.print("Magnetometer not acknowledging!");
if(sensorStatus & 0x02) Serial.print("Accelerometer not acknowledging!");
if(sensorStatus & 0x04) Serial.print("Gyro not acknowledging!");
if(sensorStatus & 0x10) Serial.print("Magnetometer ID not recognized!");
if(sensorStatus & 0x20) Serial.print("Accelerometer ID not recognized!");
if(sensorStatus & 0x40) Serial.print("Gyro ID not recognized!");
Serial.print("Actual MagRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualMagRate)); Serial.println(" Hz");
Serial.print("Actual AccelRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualAccelRate)); Serial.println(" Hz");
Serial.print("Actual GyroRate = "); Serial.print(10*readByte(EM7180_ADDRESS, EM7180_ActualGyroRate)); Serial.println(" Hz");
Serial.print("Actual BaroRate = "); Serial.print(readByte(EM7180_ADDRESS, EM7180_ActualBaroRate)); Serial.println(" Hz");
Serial.println(""); Serial.println("*******************************************");
Serial.println("Send '1' to store Warm Start configuration");
Serial.println("*******************************************"); Serial.println("");
// Give some time to read the screen
delay(1000);
}
// If pass through mode desired, set it up here
if(passThru)
{
// Put EM7180 SENtral into pass-through mode
SENtralPassThroughMode();
delay(1000);
// should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages)
I2Cscan();
// Read first page of EEPROM
uint8_t data[128];
M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x00, 0x00, 128, data);
Serial.println("EEPROM Signature Byte");
Serial.print(data[0], HEX); Serial.println(" Should be 0x2A");
Serial.print(data[1], HEX); Serial.println(" Should be 0x65");
for (int i = 0; i < 128; i++)
{
Serial.print(data[i], HEX); Serial.print(" ");
}
// Set up the interrupt pin, its set as active high, push-pull
pinMode(myLed, OUTPUT);
digitalWrite(myLed, HIGH);
// Read the WHO_AM_I register, this is a good test of communication
Serial.println("MPU9250 9-axis motion sensor...");
byte c = readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.print(" I should be "); Serial.println(0x71, HEX);
if (c == 0x71) // WHO_AM_I should always be 0x71
{
Serial.println("MPU9250 is online...");
MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
Serial.print("x-axis self test: acceleration trim within : "); Serial.print(SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : "); Serial.print(SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : "); Serial.print(SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : "); Serial.print(SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : "); Serial.print(SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : "); Serial.print(SelfTest[5],1); Serial.println("% of factory value");
delay(1000);
// get sensor resolutions, only need to do this once
getAres();
getGres();
getMres();
Serial.println(" Calibrate gyro and accel");
accelgyrocalMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
Serial.println("accel biases (mg)"); Serial.println(1000.*accelBias[0]); Serial.println(1000.*accelBias[1]); Serial.println(1000.*accelBias[2]);
Serial.println("gyro biases (dps)"); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
delay(1000);
initMPU9250();
Serial.println("MPU9250 initialized for active data mode...."); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
I2Cscan(); // should see all the devices on the I2C bus including two from the EEPROM (ID page and data pages)
// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
byte d = readByte(AK8963_ADDRESS, WHO_AM_I_AK8963); // Read WHO_AM_I register for AK8963
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX); Serial.print(" I should be "); Serial.println(0x48, HEX);
delay(1000);
// Get magnetometer calibration from AK8963 ROM
// Initialize device for active mode read of magnetometer
initAK8963(magCalibration); Serial.println("AK8963 initialized for active data mode....");
magcalMPU9250(magBias, magScale);
Serial.println("AK8963 mag biases (mG)"); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]);
Serial.println("AK8963 mag scale (mG)"); Serial.println(magScale[0]); Serial.println(magScale[1]); Serial.println(magScale[2]);
delay(2000); // add delay to see results before serial spew of data
if(SerialDebug)
{
Serial.print("X-Axis sensitivity adjustment value "); Serial.println(magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value "); Serial.println(magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value "); Serial.println(magCalibration[2], 2);
}
delay(1000);
// Read the WHO_AM_I register of the BMP280 this is a good test of communication
// Read WHO_AM_I register for BMP280
byte f = readByte(BMP280_ADDRESS, BMP280_ID);
Serial.print("BMP280 ");
Serial.print("I AM ");
Serial.print(f, HEX);
Serial.print(" I should be ");
Serial.println(0x58, HEX);
Serial.println(" ");
delay(1000);
// reset BMP280 before initilization
writeByte(BMP280_ADDRESS, BMP280_RESET, 0xB6);
delay(100);
// Initialize BMP280 altimeter
BMP280Init();
Serial.println("Calibration coeficients:");
Serial.print("dig_T1 =");
Serial.println(dig_T1);
Serial.print("dig_T2 =");
Serial.println(dig_T2);
Serial.print("dig_T3 =");
Serial.println(dig_T3);
Serial.print("dig_P1 =");
Serial.println(dig_P1);
Serial.print("dig_P2 =");
Serial.println(dig_P2);
Serial.print("dig_P3 =");
Serial.println(dig_P3);
Serial.print("dig_P4 =");
Serial.println(dig_P4);
Serial.print("dig_P5 =");
Serial.println(dig_P5);
Serial.print("dig_P6 =");
Serial.println(dig_P6);
Serial.print("dig_P7 =");
Serial.println(dig_P7);
Serial.print("dig_P8 =");
Serial.println(dig_P8);
Serial.print("dig_P9 =");
Serial.println(dig_P9);
delay(1000);
}
else
{
Serial.print("Could not connect to MPU9250: 0x");
Serial.println(c, HEX);
while(1) ; // Loop forever if communication doesn't happen
}
}
}
void loop()
{
if(!passThru)
{
serial_input = Serial.read();
if (serial_input == 49)
{
delay(100);
EM7180_get_WS_params();
// Put the Sentral in pass-thru mode
WS_PassThroughMode();
// Store WarmStart data to the M24512DFM I2C EEPROM
writeSenParams();
// Take Sentral out of pass-thru mode and re-start algorithm
WS_Resume();
warm_start_saved = 1;
}
// Check event status register, way to chech data ready by polling rather than interrupt
uint8_t eventStatus = readByte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register
// Check for errors
// Error detected, what is it?
if(eventStatus & 0x02)
{
uint8_t errorStatus = readByte(EM7180_ADDRESS, EM7180_ErrorRegister);
if(!errorStatus)
{
Serial.print(" EM7180 sensor status = "); Serial.println(errorStatus);
if(errorStatus == 0x11) Serial.print("Magnetometer failure!");
if(errorStatus == 0x12) Serial.print("Accelerometer failure!");
if(errorStatus == 0x14) Serial.print("Gyro failure!");
if(errorStatus == 0x21) Serial.print("Magnetometer initialization failure!");
if(errorStatus == 0x22) Serial.print("Accelerometer initialization failure!");
if(errorStatus == 0x24) Serial.print("Gyro initialization failure!");
if(errorStatus == 0x30) Serial.print("Math error!");
if(errorStatus == 0x80) Serial.print("Invalid sample rate!");
}
// Handle errors ToDo
}
// if no errors, see if new data is ready
// new acceleration data available
if(eventStatus & 0x10)
{
readSENtralAccelData(accelCount);
// Now we'll calculate the accleration value into actual g's
ax = (float)accelCount[0]*0.000488; // get actual g value
ay = (float)accelCount[1]*0.000488;
az = (float)accelCount[2]*0.000488;
}
if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x20)
{
// new gyro data available
readSENtralGyroData(gyroCount);
// Now we'll calculate the gyro value into actual dps's
gx = (float)gyroCount[0]*0.153; // get actual dps value
gy = (float)gyroCount[1]*0.153;
gz = (float)gyroCount[2]*0.153;
}
if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x08)
{
// new mag data available
readSENtralMagData(magCount);
// Now we'll calculate the mag value into actual G's
// get actual G value
mx = (float)magCount[0]*0.305176;
my = (float)magCount[1]*0.305176;
mz = (float)magCount[2]*0.305176;
}
readSENtralQuatData(Quat);
// get BMP280 pressure
// new baro data available
if(readByte(EM7180_ADDRESS, EM7180_EventStatus) & 0x40)
{
rawPressure = readSENtralBaroData();
pressure = (float)rawPressure*0.01f +1013.25f; // pressure in mBar
// get BMP280 temperature
rawTemperature = readSENtralTempData();
temperature = (float) rawTemperature*0.01; // temperature in degrees C
}
}
if(passThru)
{
// If intPin goes high, all data registers have new data
readAccelData(accelCount); // Read the x/y/z adc values
// Now we'll calculate the acceleration value into actual g's
ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set
ay = (float)accelCount[1]*aRes - accelBias[1];
az = (float)accelCount[2]*aRes - accelBias[2];
// Read the x/y/z adc values
readGyroData(gyroCount);
// Calculate the gyro value into actual degrees per second
gx = (float)gyroCount[0]*gRes; // get actual gyro value, this depends on scale being set
gy = (float)gyroCount[1]*gRes;
gz = (float)gyroCount[2]*gRes;
readMagData(magCount); // Read the x/y/z adc values
// Calculate the magnetometer values in milliGauss
mx = (float)magCount[0]*mRes*magCalibration[0] - magBias[0]; // get actual magnetometer value, this depends on scale being set
my = (float)magCount[1]*mRes*magCalibration[1] - magBias[1];
mz = (float)magCount[2]*mRes*magCalibration[2] - magBias[2];
}
// keep track of rates
Now = micros();
// set integration time by time elapsed since last filter update
deltat = ((Now - lastUpdate)/1000000.0f);
lastUpdate = Now;
sum += deltat; // sum for averaging filter update rate
sumCount++;
// Sensors x (y)-axis of the accelerometer is aligned with the -y (x)-axis of the magnetometer;
// the magnetometer z-axis (+ up) is aligned with z-axis (+ up) of accelerometer and gyro!
// We have to make some allowance for this orientation mismatch in feeding the output to the quaternion filter.
// For the BMX-055, we have chosen a magnetic rotation that keeps the sensor forward along the x-axis just like
// in the MPU9250 sensor. This rotation can be modified to allow any convenient orientation convention.
// This is ok by aircraft orientation standards!
// Pass gyro rate as rad/s
MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
// if(passThru)MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, -my, mx, mz);
// Serial print and/or display at 0.5 s rate independent of data rates
delt_t = millis() - count;
// update LCD once per half-second independent of read rate
if (delt_t > 500)
{
if(SerialDebug)
{
Serial.print("ax = "); Serial.print((int)1000*ax);
Serial.print(" ay = "); Serial.print((int)1000*ay);
Serial.print(" az = "); Serial.print((int)1000*az); Serial.println(" mg");
Serial.print("gx = "); Serial.print( gx, 2);
Serial.print(" gy = "); Serial.print( gy, 2);
Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)mx);
Serial.print(" my = "); Serial.print( (int)my);
Serial.print(" mz = "); Serial.print( (int)mz); Serial.println(" mG");
Serial.println("Software quaternions (ENU):");
Serial.print("q0 = "); Serial.print(q[0]);
Serial.print(" qx = "); Serial.print(q[1]);
Serial.print(" qy = "); Serial.print(q[2]);
Serial.print(" qz = "); Serial.println(q[3]);
Serial.println("Hardware quaternions (NED):");
Serial.print("Q0 = "); Serial.print(Quat[0]);
Serial.print(" Qx = "); Serial.print(Quat[1]);
Serial.print(" Qy = "); Serial.print(Quat[2]);
Serial.print(" Qz = "); Serial.println(Quat[3]);
}
if(passThru)
{
rawPress = readBMP280Pressure();
pressure = (float) bmp280_compensate_P(rawPress)/25600.; // Pressure in mbar
rawTemp = readBMP280Temperature();
temperature = (float) bmp280_compensate_T(rawTemp)/100.;
}
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
// In this coordinate system, the positive z-axis is down toward Earth.
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
//Software AHRS:
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
pitch *= 180.0f / PI;
yaw *= 180.0f / PI;
yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(yaw < 0) yaw += 360.0f; // Ensure yaw stays between 0 and 360
roll *= 180.0f / PI;
//Hardware AHRS:
Yaw = atan2(2.0f * (Quat[0] * Quat[1] + Quat[3] * Quat[2]), Quat[3] * Quat[3] + Quat[0] * Quat[0] - Quat[1] * Quat[1] - Quat[2] * Quat[2]);
Pitch = -asin(2.0f * (Quat[0] * Quat[2] - Quat[3] * Quat[1]));
Roll = atan2(2.0f * (Quat[3] * Quat[0] + Quat[1] * Quat[2]), Quat[3] * Quat[3] - Quat[0] * Quat[0] - Quat[1] * Quat[1] + Quat[2] * Quat[2]);
Pitch *= 180.0f / PI;
Yaw *= 180.0f / PI;
Yaw += 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
if(Yaw < 0) Yaw += 360.0f ; // Ensure yaw stays between 0 and 360
Roll *= 180.0f / PI;
// Or define output variable according to the Android system, where heading (0 to 360) is defined by the angle between the y-axis
// and True North, pitch is rotation about the x-axis (-180 to +180), and roll is rotation about the y-axis (-90 to +90)
// In this systen, the z-axis is pointing away from Earth, the +y-axis is at the "top" of the device (cellphone) and the +x-axis
// points toward the right of the device.
if(SerialDebug)
{
Serial.print("Software yaw, pitch, roll: ");
Serial.print(yaw, 2);
Serial.print(", ");
Serial.print(pitch, 2);
Serial.print(", ");
Serial.println(roll, 2);
Serial.print("Hardware Yaw, Pitch, Roll: ");
Serial.print(Yaw, 2);
Serial.print(", ");
Serial.print(Pitch, 2);
Serial.print(", ");
Serial.println(Roll, 2);
Serial.println("BMP280:");
Serial.print("Altimeter temperature = ");
Serial.print( temperature, 2);
Serial.println(" C"); // temperature in degrees Celsius
Serial.print("Altimeter temperature = ");
Serial.print(9.*temperature/5. + 32., 2);
Serial.println(" F"); // temperature in degrees Fahrenheit
Serial.print("Altimeter pressure = ");
Serial.print(pressure, 2);
Serial.println(" mbar");// pressure in millibar
altitude = 145366.45f*(1.0f - pow((pressure/1013.25f), 0.190284f));
Serial.print("Altitude = ");
Serial.print(altitude, 2);
Serial.println(" feet");
Serial.println(" ");
if(warm_start_saved)
{
Serial.println("Warm Start configuration saved!");
} else
{
Serial.println("Send '1' to store Warm Start configuration");
}
}
Serial.print(millis()/1000.0, 1);Serial.print(",");
Serial.print(yaw); Serial.print(",");Serial.print(pitch); Serial.print(",");Serial.print(roll); Serial.print(",");
Serial.print(Yaw); Serial.print(",");Serial.print(Pitch); Serial.print(",");Serial.println(Roll);
digitalWrite(myLed, !digitalRead(myLed));
count = millis();
sumCount = 0;
sum = 0;
}
}
//===================================================================================================================
//====== Sentral parameter management functions
//===================================================================================================================
void EM7180_set_gyro_FS (uint16_t gyro_fs)
{
uint8_t bytes[4], STAT;
bytes[0] = gyro_fs & (0xFF);
bytes[1] = (gyro_fs >> 8) & (0xFF);
bytes[2] = 0x00;
bytes[3] = 0x00;
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused
// Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB);
// Request parameter transfer procedure
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==0xCB)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_mag_acc_FS (uint16_t mag_fs, uint16_t acc_fs) {
uint8_t bytes[4], STAT;
bytes[0] = mag_fs & (0xFF);
bytes[1] = (mag_fs >> 8) & (0xFF);
bytes[2] = acc_fs & (0xFF);
bytes[3] = (acc_fs >> 8) & (0xFF);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB
// Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA);
//Request parameter transfer procedure
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==0xCA)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
// Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_integer_param (uint8_t param, uint32_t param_val)
{
uint8_t bytes[4], STAT;
bytes[0] = param_val & (0xFF);
bytes[1] = (param_val >> 8) & (0xFF);
bytes[2] = (param_val >> 16) & (0xFF);
bytes[3] = (param_val >> 24) & (0xFF);
// Parameter is the decimal value with the MSB set high to indicate a paramter write processs
param = param | 0x80;
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
// Request parameter transfer procedure
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==param)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
// Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_float_param (uint8_t param, float param_val) {
uint8_t bytes[4], STAT;
float_to_bytes (param_val, &bytes[0]);
// Parameter is the decimal value with the MSB set high to indicate a paramter write processs
param = param | 0x80;
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
// Request parameter transfer procedure
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==param)) {
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
// Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void EM7180_set_WS_params()
{
uint8_t param = 1;
uint8_t STAT;
// Parameter is the decimal value with the MSB set high to indicate a paramter write processs
param = param | 0x80;
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, WS_params.Sen_param[0][0]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, WS_params.Sen_param[0][1]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, WS_params.Sen_param[0][2]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, WS_params.Sen_param[0][3]);
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
// Request parameter transfer procedure
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==param))
{
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
for(uint8_t i=1; i<35; i++)
{
param = (i+1) | 0x80;
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte0, WS_params.Sen_param[i][0]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte1, WS_params.Sen_param[i][1]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte2, WS_params.Sen_param[i][2]);
writeByte(EM7180_ADDRESS, EM7180_LoadParamByte3, WS_params.Sen_param[i][3]);
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==param))
{
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
}
// Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00);
}
void EM7180_get_WS_params()
{
uint8_t param = 1;
uint8_t STAT;
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
delay(10);
// Request parameter transfer procedure
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80);
delay(10);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==param))
{
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
// Parameter is the decimal value with the MSB set low (default) to indicate a paramter read processs
WS_params.Sen_param[0][0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
WS_params.Sen_param[0][1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
WS_params.Sen_param[0][2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
WS_params.Sen_param[0][3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
for(uint8_t i=1; i<35; i++)
{
param = (i+1);
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, param);
delay(10);
// Check the parameter acknowledge register and loop until the result matches parameter request byte
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
while(!(STAT==param))
{
STAT = readByte(EM7180_ADDRESS, EM7180_ParamAcknowledge);
}
WS_params.Sen_param[i][0] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte0);
WS_params.Sen_param[i][1] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte1);
WS_params.Sen_param[i][2] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte2);
WS_params.Sen_param[i][3] = readByte(EM7180_ADDRESS, EM7180_SavedParamByte3);
}
// Parameter request = 0 to end parameter transfer process
writeByte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00);
// Re-start algorithm
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00);
}
void WS_PassThroughMode()
{
uint8_t stat = 0;
// First put SENtral in standby mode
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x01);
delay(5);
// Place SENtral in pass-through mode
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01);
delay(5);
stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
while(!(stat & 0x01))
{
stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
delay(5);
}
}
void WS_Resume()
{
uint8_t stat = 0;
// Cancel pass-through mode
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00);
delay(5);
stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
while((stat & 0x01))
{
stat = readByte(EM7180_ADDRESS, EM7180_PassThruStatus);
delay(5);
}
// Re-start algorithm
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00);
delay(5);
stat = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
while((stat & 0x01))
{
stat = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
delay(5);
}
}
void readSenParams()
{
uint8_t data[140];
uint8_t paramnum;
M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x80, 12, &data[128]); // Page 255
delay(100);
M24512DFMreadBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x00, 128, &data[0]); // Page 254
for (paramnum = 0; paramnum < 35; paramnum++) // 35 parameters
{
for (uint8_t i= 0; i < 4; i++)
{
WS_params.Sen_param[paramnum][i] = data[(paramnum*4 + i)];
}
}
}
void writeSenParams()
{
uint8_t data[140];
uint8_t paramnum;
for (paramnum = 0; paramnum < 35; paramnum++) // 35 parameters
{
for (uint8_t i= 0; i < 4; i++)
{
data[(paramnum*4 + i)] = WS_params.Sen_param[paramnum][i];
}
}
M24512DFMwriteBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x80, 12, &data[128]); // Page 255
delay(100);
M24512DFMwriteBytes(M24512DFM_DATA_ADDRESS, 0x7f, 0x00, 128, &data[0]); // Page 254
}
//===================================================================================================================
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
//===================================================================================================================
float uint32_reg_to_float (uint8_t *buf)
{
union {
uint32_t ui32;
float f;
} u;
u.ui32 = (((uint32_t)buf[0]) +
(((uint32_t)buf[1]) << 8) +
(((uint32_t)buf[2]) << 16) +
(((uint32_t)buf[3]) << 24));
return u.f;
}
void float_to_bytes (float param_val, uint8_t *buf) {
union {
float f;
uint8_t comp[sizeof(float)];
} u;
u.f = param_val;
for (uint8_t i=0; i < sizeof(float); i++) {
buf[i] = u.comp[i];
}
//Convert to LITTLE ENDIAN
for (uint8_t i=0; i < sizeof(float); i++) {
buf[i] = buf[(sizeof(float)-1) - i];
}
}
void readSENtralQuatData(float * destination)
{
uint8_t rawData[16]; // x/y/z quaternion register data stored here
readBytes(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array
destination[0] = uint32_reg_to_float (&rawData[0]);
destination[1] = uint32_reg_to_float (&rawData[4]);
destination[2] = uint32_reg_to_float (&rawData[8]);
destination[3] = uint32_reg_to_float (&rawData[12]); // SENtral stores quats as qx, qy, qz, q0!
}
void readSENtralAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readSENtralGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void readSENtralMagData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t)rawData[3] << 8) | rawData[2]);
destination[2] = (int16_t) (((int16_t)rawData[5] << 8) | rawData[4]);
}
void getMres() {
switch (Mscale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 14 bit resolution (0) and 16 bit resolution (1)
case MFS_14BITS:
mRes = 10.*4912./8190.; // Proper scale to return milliGauss
break;
case MFS_16BITS:
mRes = 10.*4912./32760.0; // Proper scale to return milliGauss
break;
}
}
void getGres() {
switch (Gscale)
{
// Possible gyro scales (and their register bit settings) are:
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case GFS_250DPS:
gRes = 250.0/32768.0;
break;
case GFS_500DPS:
gRes = 500.0/32768.0;
break;
case GFS_1000DPS:
gRes = 1000.0/32768.0;
break;
case GFS_2000DPS:
gRes = 2000.0/32768.0;
break;
}
}
void getAres() {
switch (Ascale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
case AFS_2G:
aRes = 2.0/32768.0;
break;
case AFS_4G:
aRes = 4.0/32768.0;
break;
case AFS_8G:
aRes = 8.0/32768.0;
break;
case AFS_16G:
aRes = 16.0/32768.0;
break;
}
}
void readAccelData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z accel register data stored here
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void readGyroData(int16_t * destination)
{
uint8_t rawData[6]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
destination[0] = ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[2] << 8) | rawData[3] ;
destination[2] = ((int16_t)rawData[4] << 8) | rawData[5] ;
}
void readMagData(int16_t * destination)
{
uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array
uint8_t c = rawData[6]; // End data read by reading ST2 register
if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; // Data stored as little Endian
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
}
}
}
int16_t readTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value
}
void initAK8963(float * destination)
{
// First extract the factory calibration for each magnetometer axis
uint8_t rawData[3]; // x/y/z gyro calibration data stored here
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(20);
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
delay(20);
readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values
destination[0] = (float)(rawData[0] - 128)/256. + 1.; // Return x-axis sensitivity adjustment values, etc.
destination[1] = (float)(rawData[1] - 128)/256. + 1.;
destination[2] = (float)(rawData[2] - 128)/256. + 1.;
writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer
delay(20);
// Configure the magnetometer for continuous read and highest resolution
// set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
// and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
delay(20);
}
void initMPU9250()
{
// wake up device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
delay(100); // Wait for all registers to reset
// get stable time source
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Auto select clock source to be PLL gyroscope reference if ready else
delay(200);
// Configure Gyro and Thermometer
// Disable FSYNC and set thermometer and gyro bandwidth to 41 and 42 Hz, respectively;
// minimum delay time for this setting is 5.9 ms, which means sensor fusion update rates cannot
// be higher than 1 / 0.0059 = 170 Hz
// DLPF_CFG = bits 2:0 = 011; this limits the sample rate to 1000 Hz for both
// With the MPU9250, it is possible to get gyro sample rates of 32 kHz (!), 8 kHz, or 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x03);
// Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; a rate consistent with the filter update rate
// determined inset in CONFIG above
// Set gyroscope full scale range
// Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); // get current GYRO_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x02; // Clear Fchoice bits [1:0]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Gscale << 3; // Set full scale range for the gyro
// c =| 0x00; // Set Fchoice for the gyro to 11 by writing its inverse to bits 1:0 of GYRO_CONFIG
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c ); // Write new GYRO_CONFIG value to register
// Set accelerometer full-scale range configuration
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); // get current ACCEL_CONFIG register value
// c = c & ~0xE0; // Clear self-test bits [7:5]
c = c & ~0x18; // Clear AFS bits [4:3]
c = c | Ascale << 3; // Set full scale range for the accelerometer
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c); // Write new ACCEL_CONFIG register value
// Set accelerometer sample rate configuration
// It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
// accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); // get current ACCEL_CONFIG2 register value
c = c & ~0x0F; // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])
c = c | 0x03; // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c); // Write new ACCEL_CONFIG2 register value
// The accelerometer, gyro, and thermometer are set to 1 kHz sample rates,
// but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
// Configure Interrupts and Bypass Enable
// Set interrupt pin active high, push-pull, hold interrupt pin level HIGH until interrupt cleared,
// clear on read of INT_STATUS, and enable I2C_BYPASS_EN so additional chips
// can join the I2C bus and all can be controlled by the Arduino as master
writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
delay(100);
}
// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
void accelgyrocalMPU9250(float * dest1, float * dest2)
{
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
// else use the internal oscillator, bits 2:0 = 001
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);
writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
// Output scaled gyro biases for display in the main program
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFE;
data[1] = (accel_bias_reg[0]) & 0xFE;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFE;
data[3] = (accel_bias_reg[1]) & 0xFE;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFE;
data[5] = (accel_bias_reg[2]) & 0xFE;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
/* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
*/
// Output scaled accelerometer biases for display in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
void magcalMPU9250(float * dest1, float * dest2)
{
uint16_t ii = 0, sample_count = 0;
int32_t mag_bias[3] = {0, 0, 0}, mag_scale[3] = {0, 0, 0};
int16_t mag_max[3] = {0xFF, 0xFF, 0xFF}, mag_min[3] = {0x7F, 0x7F, 0x7F}, mag_temp[3] = {0, 0, 0};
Serial.println("Mag Calibration: Wave device in a figure eight until done!");
delay(4000);
if(Mmode == 0x02) sample_count = 128;
if(Mmode == 0x06) sample_count = 1500;
for(ii = 0; ii < sample_count; ii++) {
readMagData(mag_temp); // Read the mag data
for (int jj = 0; jj < 3; jj++) {
if(mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
if(mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
}
if(Mmode == 0x02) delay(135); // at 8 Hz ODR, new mag data is available every 125 ms
if(Mmode == 0x06) delay(12); // at 100 Hz ODR, new mag data is available every 10 ms
}
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
// Get hard iron correction
mag_bias[0] = (mag_max[0] + mag_min[0])/2; // get average x mag bias in counts
mag_bias[1] = (mag_max[1] + mag_min[1])/2; // get average y mag bias in counts
mag_bias[2] = (mag_max[2] + mag_min[2])/2; // get average z mag bias in counts
dest1[0] = (float) mag_bias[0]*mRes*magCalibration[0]; // save mag biases in G for main program
dest1[1] = (float) mag_bias[1]*mRes*magCalibration[1];
dest1[2] = (float) mag_bias[2]*mRes*magCalibration[2];
// Get soft iron correction estimate
mag_scale[0] = (mag_max[0] - mag_min[0])/2; // get average x axis max chord length in counts
mag_scale[1] = (mag_max[1] - mag_min[1])/2; // get average y axis max chord length in counts
mag_scale[2] = (mag_max[2] - mag_min[2])/2; // get average z axis max chord length in counts
float avg_rad = mag_scale[0] + mag_scale[1] + mag_scale[2];
avg_rad /= 3.0;
dest2[0] = avg_rad/((float)mag_scale[0]);
dest2[1] = avg_rad/((float)mag_scale[1]);
dest2[2] = avg_rad/((float)mag_scale[2]);
Serial.println("Mag Calibration done!");
}
// Accelerometer and gyroscope self test; check calibration wrt factory settings
void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
{
uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
uint8_t selfTest[6];
int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
float factoryTrim[6];
uint8_t FS = 0;
writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
aAvg[ii] /= 200;
gAvg[ii] /= 200;
}
// Configure the accelerometer for self-test
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
delay(25); // Delay a while to let the device stabilize
for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
}
for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
aSTAvg[ii] /= 200;
gSTAvg[ii] /= 200;
}
// Configure the gyro and accelerometer for normal operation
writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
delay(25); // Delay a while to let the device stabilize
// Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
// Retrieve factory self-test value from self-test code reads
factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
// Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
// To get percent, must multiply by 100
for (int i = 0; i < 3; i++) {
destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
}
}
int16_t readSENtralBaroData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_Baro, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
}
int16_t readSENtralTempData()
{
uint8_t rawData[2]; // x/y/z gyro register data stored here
readBytes(EM7180_ADDRESS, EM7180_Temp, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
return (int16_t) (((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value
}
void SENtralPassThroughMode()
{
// First put SENtral in standby mode
uint8_t c = readByte(EM7180_ADDRESS, EM7180_AlgorithmControl);
writeByte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01);
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
// Serial.print("c = "); Serial.println(c);
// Verify standby status
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
Serial.println("SENtral in standby mode");
// Place SENtral in pass-through mode
writeByte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01);
if(readByte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) {
Serial.println("SENtral in pass-through mode");
}
else
{
Serial.println("ERROR! SENtral not in pass-through mode!");
}
}
int32_t readBMP280Temperature()
{
uint8_t rawData[3]; // 20-bit pressure register data stored here
readBytes(BMP280_ADDRESS, BMP280_TEMP_MSB, 3, &rawData[0]);
return (int32_t) (((int32_t) rawData[0] << 16 | (int32_t) rawData[1] << 8 | rawData[2]) >> 4);
}
int32_t readBMP280Pressure()
{
uint8_t rawData[3]; // 20-bit pressure register data stored here
readBytes(BMP280_ADDRESS, BMP280_PRESS_MSB, 3, &rawData[0]);
return (int32_t) (((int32_t) rawData[0] << 16 | (int32_t) rawData[1] << 8 | rawData[2]) >> 4);
}
void BMP280Init()
{
// Configure the BMP280
// Set T and P oversampling rates and sensor mode
writeByte(BMP280_ADDRESS, BMP280_CTRL_MEAS, Tosr << 5 | Posr << 2 | Mode);
// Set standby time interval in normal mode and bandwidth
writeByte(BMP280_ADDRESS, BMP280_CONFIG, SBy << 5 | IIRFilter << 2);
// Read and store calibration data
uint8_t calib[24];
readBytes(BMP280_ADDRESS, BMP280_CALIB00, 24, &calib[0]);
dig_T1 = (uint16_t)(((uint16_t) calib[1] << 8) | calib[0]);
dig_T2 = ( int16_t)((( int16_t) calib[3] << 8) | calib[2]);
dig_T3 = ( int16_t)((( int16_t) calib[5] << 8) | calib[4]);
dig_P1 = (uint16_t)(((uint16_t) calib[7] << 8) | calib[6]);
dig_P2 = ( int16_t)((( int16_t) calib[9] << 8) | calib[8]);
dig_P3 = ( int16_t)((( int16_t) calib[11] << 8) | calib[10]);
dig_P4 = ( int16_t)((( int16_t) calib[13] << 8) | calib[12]);
dig_P5 = ( int16_t)((( int16_t) calib[15] << 8) | calib[14]);
dig_P6 = ( int16_t)((( int16_t) calib[17] << 8) | calib[16]);
dig_P7 = ( int16_t)((( int16_t) calib[19] << 8) | calib[18]);
dig_P8 = ( int16_t)((( int16_t) calib[21] << 8) | calib[20]);
dig_P9 = ( int16_t)((( int16_t) calib[23] << 8) | calib[22]);
}
// Returns temperature in DegC, resolution is 0.01 DegC. Output value of
// “5123” equals 51.23 DegC.
int32_t bmp280_compensate_T(int32_t adc_T)
{
int32_t var1, var2, T;
var1 = ((((adc_T >> 3) - ((int32_t)dig_T1 << 1))) * ((int32_t)dig_T2)) >> 11;
var2 = (((((adc_T >> 4) - ((int32_t)dig_T1)) * ((adc_T >> 4) - ((int32_t)dig_T1))) >> 12) * ((int32_t)dig_T3)) >> 14;
t_fine = var1 + var2;
T = (t_fine * 5 + 128) >> 8;
return T;
}
// Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8
//fractional bits).
//Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa
uint32_t bmp280_compensate_P(int32_t adc_P)
{
long long var1, var2, p;
var1 = ((long long)t_fine) - 128000;
var2 = var1 * var1 * (long long)dig_P6;
var2 = var2 + ((var1*(long long)dig_P5)<<17);
var2 = var2 + (((long long)dig_P4)<<35);
var1 = ((var1 * var1 * (long long)dig_P3)>>8) + ((var1 * (long long)dig_P2)<<12);
var1 = (((((long long)1)<<47)+var1))*((long long)dig_P1)>>33;
if(var1 == 0)
{
return 0;
// avoid exception caused by division by zero
}
p = 1048576 - adc_P;
p = (((p<<31) - var2)*3125)/var1;
var1 = (((long long)dig_P9) * (p>>13) * (p>>13)) >> 25;
var2 = (((long long)dig_P8) * p)>> 19;
p = ((p + var1 + var2) >> 8) + (((long long)dig_P7)<<4);
return (uint32_t)p;
}
//===================================================================================================================
//====== I2C Communication Support Functions
//===================================================================================================================
// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor
// since the address is defined by two bytes
void M24512DFMwriteByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t data)
{
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
void M24512DFMwriteBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
if(count > 128)
{
count = 128;
Serial.print("Page count cannot be more than 128 bytes!");
}
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
for(uint8_t i=0; i < count; i++)
{
Wire.write(dest[i]); // Put data in Tx buffer
}
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t M24512DFMreadByte(uint8_t device_address, uint8_t data_address1, uint8_t data_address2)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
Wire.requestFrom(device_address, (size_t)1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void M24512DFMreadBytes(uint8_t device_address, uint8_t data_address1, uint8_t data_address2, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(device_address); // Initialize the Tx buffer
Wire.write(data_address1); // Put slave register address in Tx buffer
Wire.write(data_address2); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(device_address, (size_t)count); // Read bytes from slave register address
while (Wire.available())
{
dest[i++] = Wire.read();
} // Put read results in the Rx buffer
}
// simple function to scan for I2C devices on the bus
void I2Cscan()
{
// scan for i2c devices
byte error, address;
int nDevices;
Serial.println("Scanning...");
nDevices = 0;
for(address = 1; address < 127; address++ )
{
// The i2c_scanner uses the return value of
// the Write.endTransmisstion to see if
// a device did acknowledge to the address.
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (error == 0)
{
Serial.print("I2C device found at address 0x");
if (address<16)
Serial.print("0");
Serial.print(address,HEX);
Serial.println(" !");
nDevices++;
}
else if (error==4)
{
Serial.print("Unknow error at address 0x");
if (address<16)
Serial.print("0");
Serial.println(address,HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found\n");
else
Serial.println("done\n");
}
// I2C read/write functions for the MPU9250 and AK8963 sensors
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.write(data); // Put data in Tx buffer
Wire.endTransmission(); // Send the Tx buffer
}
uint8_t readByte(uint8_t address, uint8_t subAddress)
{
uint8_t data; // `data` will store the register data
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address
data = Wire.read(); // Fill Rx buffer with result
return data; // Return data read from slave register
}
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
{
Wire.beginTransmission(address); // Initialize the Tx buffer
Wire.write(subAddress); // Put slave register address in Tx buffer
Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
uint8_t i = 0;
Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address
while (Wire.available())
{
dest[i++] = Wire.read();
} // Put read results in the Rx buffer
}