You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
684 lines
23 KiB
684 lines
23 KiB
/* |
|
* em7180.c |
|
* |
|
* Created on: Jan 18, 2021 |
|
* Author: Daniel Peter Chokola |
|
* |
|
* Adapted From: |
|
* EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly |
|
* by: Kris Winer |
|
* 06/29/2017 Copyright Tlera Corporation |
|
* |
|
* Library may be used freely and without limit with attribution. |
|
*/ |
|
|
|
/* Includes */ |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <math.h> |
|
#include "em7180_common.h" |
|
#include "em7180.h" |
|
#include "i2c.h" |
|
|
|
/* Data Structures */ |
|
|
|
/* Private Global Variables */ |
|
|
|
/* Function Prototypes */ |
|
static void em7180_passthrough(em7180_t *em7180); |
|
static float uint32_reg_to_float(uint8_t *buf); |
|
static void float_to_bytes(float param_val, uint8_t *buf); |
|
|
|
/* Function Definitions */ |
|
void em7180_init(em7180_t *em7180, I2C_HandleTypeDef *hi2c, lsm6dsm_t *lsm6dsm, |
|
lis2mdl_t *lis2mdl, lps22hb_t *lps22hb, uint16_t acc_fs, |
|
uint16_t gyro_fs, uint16_t mag_fs, uint8_t q_rate_div, |
|
uint8_t mag_rate, uint8_t acc_rate, uint8_t gyro_rate, |
|
uint8_t baro_rate) |
|
{ |
|
return_if_fail(em7180); |
|
|
|
em7180->hi2c = hi2c; |
|
em7180->lsm6dsm = lsm6dsm; |
|
em7180->lis2mdl = lis2mdl; |
|
em7180->lps22hb = lps22hb; |
|
em7180->acc_fs = acc_fs; |
|
em7180->gyro_fs = gyro_fs; |
|
em7180->mag_fs = mag_fs; |
|
em7180->q_rate_div = q_rate_div; |
|
em7180->mag_rate = mag_rate; |
|
em7180->acc_rate = acc_rate; |
|
em7180->gyro_rate = gyro_rate; |
|
em7180->baro_rate = baro_rate; |
|
|
|
/* configure the EM7180 */ |
|
em7180_config(em7180); |
|
/* enter passthrough mode */ |
|
em7180_passthrough(em7180); |
|
/* and configure the devices on the slave bus */ |
|
if(em7180->lsm6dsm) |
|
{ |
|
lsm6dsm_config(em7180->lsm6dsm, em7180->hi2c); |
|
} |
|
if(em7180->lis2mdl) |
|
{ |
|
lis2mdl_config(em7180->lis2mdl, em7180->hi2c); |
|
} |
|
if(em7180->lps22hb) |
|
{ |
|
lps22hb_config(em7180->lps22hb, em7180->hi2c); |
|
} |
|
} |
|
|
|
void em7180_config(em7180_t *em7180) |
|
{ |
|
uint8_t runStatus; |
|
uint8_t algoStatus; |
|
uint8_t passthruStatus; |
|
uint8_t eventStatus; |
|
uint8_t sensorStatus; |
|
|
|
// Enter EM7180 initialized state |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers |
|
|
|
/* Legacy MPU6250 stuff, it seems |
|
// Setup LPF bandwidth (BEFORE setting ODR's) |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz */ |
|
// Set accel/gyro/mag desired ODR rates |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_QRateDivisor, |
|
em7180->q_rate_div); // quat rate = gyroRt/(1 QRTDiv) |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_MagRate, |
|
em7180->mag_rate); // 0x64 = 100 Hz |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AccelRate, |
|
em7180->acc_rate); // 200/10 Hz, 0x14 = 200 Hz |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_GyroRate, |
|
em7180->gyro_rate); // 200/10 Hz, 0x14 = 200 Hz |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_BaroRate, |
|
0x80 | em7180->baro_rate); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz |
|
|
|
// Configure operating mode |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data |
|
// Enable interrupt to host upon certain events |
|
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), |
|
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_EnableEvents, 0x07); |
|
// Enable EM7180 run mode |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode |
|
HAL_Delay(100); |
|
|
|
// EM7180 parameter adjustments |
|
/* Serial.println("Beginning Parameter Adjustments"); */ |
|
|
|
// Disable stillness mode for balancing robot application |
|
em7180_set_integer_param(em7180, 0x49, 0x00); |
|
|
|
// Write desired sensor full scale ranges to the EM7180 |
|
em7180_mag_acc_set_fs(em7180, em7180->mag_fs, em7180->acc_fs); // 1000 uT == 0x3E8, 8 g == 0x08 |
|
em7180_gyro_set_fs(em7180, em7180->gyro_fs); // 2000 dps == 0x7D0 |
|
|
|
// Read EM7180 status |
|
runStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RunStatus); |
|
if(runStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 run status = normal mode"); */ |
|
} |
|
algoStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_AlgorithmStatus); |
|
if(algoStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 standby status"); */ |
|
} |
|
if(algoStatus & 0x02) |
|
{ |
|
/* Serial.println(" EM7180 algorithm slow"); */ |
|
} |
|
if(algoStatus & 0x04) |
|
{ |
|
/* Serial.println(" EM7180 in stillness mode"); */ |
|
} |
|
if(algoStatus & 0x08) |
|
{ |
|
/* Serial.println(" EM7180 mag calibration completed"); */ |
|
} |
|
if(algoStatus & 0x10) |
|
{ |
|
/* Serial.println(" EM7180 magnetic anomaly detected"); */ |
|
} |
|
if(algoStatus & 0x20) |
|
{ |
|
/* Serial.println(" EM7180 unreliable sensor data"); */ |
|
} |
|
passthruStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_PassThruStatus); |
|
if(passthruStatus & 0x01) |
|
{ |
|
/* Serial.print(" EM7180 in passthru mode!"); */ |
|
} |
|
eventStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_EventStatus); |
|
if(eventStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 CPU reset"); */ |
|
} |
|
if(eventStatus & 0x02) |
|
{ |
|
/* Serial.println(" EM7180 Error"); */ |
|
} |
|
if(eventStatus & 0x04) |
|
{ |
|
/* Serial.println(" EM7180 new quaternion result"); */ |
|
} |
|
if(eventStatus & 0x08) |
|
{ |
|
/* Serial.println(" EM7180 new mag result"); */ |
|
} |
|
if(eventStatus & 0x10) |
|
{ |
|
/* Serial.println(" EM7180 new accel result"); */ |
|
} |
|
if(eventStatus & 0x20) |
|
{ |
|
/* Serial.println(" EM7180 new gyro result"); */ |
|
} |
|
|
|
HAL_Delay(1000); // give some time to read the screen |
|
|
|
// Check sensor status |
|
sensorStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_SensorStatus); |
|
/* Serial.print(" EM7180 sensor status = "); */ |
|
/* Serial.println(sensorStatus); */ |
|
if(sensorStatus & 0x01) |
|
{ |
|
/* Serial.print("Magnetometer not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x02) |
|
{ |
|
/* Serial.print("Accelerometer not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x04) |
|
{ |
|
/* Serial.print("Gyro not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x10) |
|
{ |
|
/* Serial.print("Magnetometer ID not recognized!"); */ |
|
} |
|
if(sensorStatus & 0x20) |
|
{ |
|
/* Serial.print("Accelerometer ID not recognized!"); */ |
|
} |
|
if(sensorStatus & 0x40) |
|
{ |
|
/* Serial.print("Gyro ID not recognized!"); */ |
|
} |
|
|
|
/* Serial.print("Actual MagRate = "); */ |
|
/* Serial.print(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualMagRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual AccelRate = "); */ |
|
/* Serial.print(10 * i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualAccelRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual GyroRate = "); */ |
|
/* Serial.print(10 * i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualGyroRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual BaroRate = "); */ |
|
/* Serial.print(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualBaroRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
} |
|
|
|
#if(0) |
|
void em7180_chip_id_get(em7180_t *em7180) |
|
{ |
|
// Read SENtral device information |
|
uint16_t ROM1 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ROMVersion1); |
|
uint16_t ROM2 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ROMVersion2); |
|
/* Serial.print("EM7180 ROM Version: 0x"); */ |
|
/* Serial.print(ROM1, HEX); */ |
|
/* Serial.println(ROM2, HEX); */ |
|
/* Serial.println("Should be: 0xE609"); */ |
|
uint16_t RAM1 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RAMVersion1); |
|
uint16_t RAM2 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RAMVersion2); |
|
/* Serial.print("EM7180 RAM Version: 0x"); */ |
|
/* Serial.print(RAM1); */ |
|
/* Serial.println(RAM2); */ |
|
uint8_t PID = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ProductID); |
|
/* Serial.print("EM7180 ProductID: 0x"); */ |
|
/* Serial.print(PID, HEX); */ |
|
/* Serial.println(" Should be: 0x80"); */ |
|
uint8_t RID = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RevisionID); |
|
/* Serial.print("EM7180 RevisionID: 0x"); */ |
|
/* Serial.print(RID, HEX); */ |
|
/* Serial.println(" Should be: 0x02"); */ |
|
} |
|
#endif |
|
|
|
void em7180_load_fw_from_eeprom(em7180_t *em7180) |
|
{ |
|
// Check which sensors can be detected by the EM7180 |
|
uint8_t featureflag = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_FeatureFlags); |
|
if(featureflag & 0x01) |
|
{ |
|
/* Serial.println("A barometer is installed"); */ |
|
} |
|
if(featureflag & 0x02) |
|
{ |
|
/* Serial.println("A humidity sensor is installed"); */ |
|
} |
|
if(featureflag & 0x04) |
|
{ |
|
/* Serial.println("A temperature sensor is installed"); */ |
|
} |
|
if(featureflag & 0x08) |
|
{ |
|
/* Serial.println("A custom sensor is installed"); */ |
|
} |
|
if(featureflag & 0x10) |
|
{ |
|
/* Serial.println("A second custom sensor is installed"); */ |
|
} |
|
if(featureflag & 0x20) |
|
{ |
|
/* Serial.println("A third custom sensor is installed"); */ |
|
} |
|
|
|
HAL_Delay(1000); // give some time to read the screen |
|
|
|
// Check SENtral status, make sure EEPROM upload of firmware was accomplished |
|
uint8_t STAT = (i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_SentralStatus) |
|
& 0x01); |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) |
|
{ |
|
/* Serial.println("EEPROM detected on the sensor bus!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) |
|
{ |
|
/* Serial.println("EEPROM uploaded config file!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) |
|
{ |
|
/* Serial.println("EEPROM CRC incorrect!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) |
|
{ |
|
/* Serial.println("EM7180 in initialized state!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) |
|
{ |
|
/* Serial.println("No EEPROM detected!"); */ |
|
} |
|
int count = 0; |
|
while(!STAT) |
|
{ |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ResetRequest, 0x01); |
|
HAL_Delay(500); |
|
count++; |
|
STAT = (i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_SentralStatus) |
|
& 0x01); |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) |
|
{ |
|
/* Serial.println("EEPROM detected on the sensor bus!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) |
|
{ |
|
/* Serial.println("EEPROM uploaded config file!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) |
|
{ |
|
/* Serial.println("EEPROM CRC incorrect!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) |
|
{ |
|
/* Serial.println("EM7180 in initialized state!"); */ |
|
} |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) |
|
{ |
|
/* Serial.println("No EEPROM detected!"); */ |
|
} |
|
if(count > 10) |
|
{ |
|
break; |
|
} |
|
} |
|
|
|
if(!(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) |
|
& 0x04)) |
|
{ |
|
/* Serial.println("EEPROM upload successful!"); */ |
|
} |
|
} |
|
|
|
uint8_t em7180_status(em7180_t *em7180) |
|
{ |
|
// Check event status register, way to check data ready by polling rather than interrupt |
|
uint8_t c = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt |
|
|
|
return c; |
|
} |
|
|
|
uint8_t em7180_errors(em7180_t *em7180) |
|
{ |
|
uint8_t c = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_ErrorRegister); // check error register |
|
|
|
return c; |
|
} |
|
|
|
void em7180_gyro_set_fs(em7180_t *em7180, uint16_t gyro_fs) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = gyro_fs & (0xFF); |
|
bytes[1] = (gyro_fs >> 8) & (0xFF); |
|
bytes[2] = 0x00; |
|
bytes[3] = 0x00; |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0, |
|
bytes[0]); // Gyro LSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1, |
|
bytes[1]); // Gyro MSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2, |
|
bytes[2]); // Unused |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3, |
|
bytes[3]); // Unused |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); // Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a parameter write process |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == 0xCB)) |
|
{ |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_ParamAcknowledge); |
|
} |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_mag_acc_set_fs(em7180_t *em7180, uint16_t mag_fs, uint16_t acc_fs) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = mag_fs & (0xFF); |
|
bytes[1] = (mag_fs >> 8) & (0xFF); |
|
bytes[2] = acc_fs & (0xFF); |
|
bytes[3] = (acc_fs >> 8) & (0xFF); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0, |
|
bytes[0]); // Mag LSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1, |
|
bytes[1]); // Mag MSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2, |
|
bytes[2]); // Acc LSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3, |
|
bytes[3]); // Acc MSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); // Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == 0xCA)) |
|
{ |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_ParamAcknowledge); |
|
} |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_set_integer_param(em7180_t *em7180, uint8_t param, |
|
uint32_t param_val) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = param_val & (0xFF); |
|
bytes[1] = (param_val >> 8) & (0xFF); |
|
bytes[2] = (param_val >> 16) & (0xFF); |
|
bytes[3] = (param_val >> 24) & (0xFF); |
|
param = param | 0x80; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0, |
|
bytes[0]); // Param LSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1, |
|
bytes[1]); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2, |
|
bytes[2]); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3, |
|
bytes[3]); // Param MSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, param); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == param)) |
|
{ |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_ParamAcknowledge); |
|
} |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_param_set_float(em7180_t *em7180, uint8_t param, float param_val) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
float_to_bytes(param_val, &bytes[0]); |
|
param = param | 0x80; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0, |
|
bytes[0]); // Param LSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1, |
|
bytes[1]); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2, |
|
bytes[2]); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3, |
|
bytes[3]); // Param MSB |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, param); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == param)) |
|
{ |
|
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_ParamAcknowledge); |
|
} |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_quatdata_get(em7180_t *em7180, float *destination) |
|
{ |
|
uint8_t data[16]; // x/y/z quaternion register data stored here |
|
|
|
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_QX, data, 16); // Read the sixteen raw data registers into data array |
|
destination[1] = uint32_reg_to_float(&data[0]); |
|
destination[2] = uint32_reg_to_float(&data[4]); |
|
destination[3] = uint32_reg_to_float(&data[8]); |
|
destination[0] = uint32_reg_to_float(&data[12]); // SENtral stores quats as qx, qy, qz, q0! |
|
} |
|
|
|
void em7180_acceldata_get(em7180_t *em7180, int16_t *destination) |
|
{ |
|
uint8_t data[6]; // x/y/z accel register data stored here |
|
|
|
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_AX, data, 6); // Read the six raw data registers into data array |
|
destination[0] = (int16_t) (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) data[3] << 8) | data[2]); |
|
destination[2] = (int16_t) (((int16_t) data[5] << 8) | data[4]); |
|
} |
|
|
|
void em7180_gyrodata_get(em7180_t *em7180, int16_t *destination) |
|
{ |
|
uint8_t data[6]; // x/y/z gyro register data stored here |
|
|
|
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_GX, data, 6); // Read the six raw data registers sequentially into data array |
|
destination[0] = (int16_t) (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) data[3] << 8) | data[2]); |
|
destination[2] = (int16_t) (((int16_t) data[5] << 8) | data[4]); |
|
} |
|
|
|
void em7180_magdata_get(em7180_t *em7180, int16_t *destination) |
|
{ |
|
uint8_t data[6]; // x/y/z mag register data stored here |
|
|
|
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_MX, data, 6); // Read the six raw data registers sequentially into data array |
|
destination[0] = (int16_t) (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) data[3] << 8) | data[2]); |
|
destination[2] = (int16_t) (((int16_t) data[5] << 8) | data[4]); |
|
} |
|
|
|
float em7180_mres_get(uint8_t Mscale) |
|
{ |
|
float m_res; |
|
|
|
switch(Mscale) |
|
{ |
|
/* |
|
* Possible magnetometer scales (and their register bit settings) are: |
|
* 14 bit resolution (0) and 16 bit resolution (1) |
|
*/ |
|
case MFS_14BITS: |
|
m_res = 10. * 4912. / 8190.; // Proper scale to return milliGauss |
|
break; |
|
case MFS_16BITS: |
|
m_res = 10. * 4912. / 32760.0; // Proper scale to return milliGauss |
|
break; |
|
default: |
|
m_res = NAN; |
|
break; |
|
} |
|
|
|
return m_res; |
|
} |
|
|
|
float em7180_gres_get(uint8_t gscale) |
|
{ |
|
float g_res; |
|
|
|
switch(gscale) |
|
{ |
|
/* |
|
* Possible gyro scales (and their register bit settings) are: |
|
* 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). |
|
* Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value: |
|
*/ |
|
case GFS_250DPS: |
|
g_res = 250.0 / 32768.0; |
|
break; |
|
case GFS_500DPS: |
|
g_res = 500.0 / 32768.0; |
|
break; |
|
case GFS_1000DPS: |
|
g_res = 1000.0 / 32768.0; |
|
break; |
|
case GFS_2000DPS: |
|
g_res = 2000.0 / 32768.0; |
|
break; |
|
default: |
|
g_res = NAN; |
|
break; |
|
} |
|
|
|
return g_res; |
|
} |
|
|
|
float em7180_ares_get(uint8_t ascale) |
|
{ |
|
float a_res; |
|
|
|
switch(ascale) |
|
{ |
|
/* |
|
* Possible accelerometer scales (and their register bit settings) are: |
|
* 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). |
|
* Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value: |
|
*/ |
|
case AFS_2G: |
|
a_res = 2.0 / 32768.0; |
|
break; |
|
case AFS_4G: |
|
a_res = 4.0 / 32768.0; |
|
break; |
|
case AFS_8G: |
|
a_res = 8.0 / 32768.0; |
|
break; |
|
case AFS_16G: |
|
a_res = 16.0 / 32768.0; |
|
break; |
|
default: |
|
a_res = NAN; |
|
break; |
|
} |
|
|
|
return a_res; |
|
} |
|
|
|
int16_t em7180_baro_get(em7180_t *em7180) |
|
{ |
|
uint8_t data[2]; // baro register data stored here |
|
|
|
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_Baro, data, 2); // Read the two raw data registers sequentially into data array |
|
|
|
return (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
} |
|
|
|
int16_t em7180_temp_get(em7180_t *em7180) |
|
{ |
|
uint8_t data[2]; // temp register data stored here |
|
|
|
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_Temp, data, 2); // Read the two raw data registers sequentially into data array |
|
|
|
return (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
} |
|
|
|
static void em7180_passthrough(em7180_t *em7180) |
|
{ |
|
// First put SENtral in standby mode |
|
uint8_t c = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, |
|
EM7180_AlgorithmControl); |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, |
|
c | 0x01); |
|
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); |
|
/* // Serial.print("c = "); Serial.println(c); */ |
|
// Verify standby status |
|
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) { |
|
/* Serial.println("SENtral in standby mode"); */ |
|
// Place SENtral in pass-through mode |
|
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_PassThruControl, 0x01); |
|
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) |
|
{ |
|
/* Serial.println("SENtral in pass-through mode"); */ |
|
} |
|
else |
|
{ |
|
/* Serial.println("ERROR! SENtral not in pass-through mode!"); */ |
|
} |
|
} |
|
|
|
static float uint32_reg_to_float(uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
uint32_t ui32; |
|
float f; |
|
} u; |
|
|
|
u.ui32 = (((uint32_t) buf[0]) + (((uint32_t) buf[1]) << 8) |
|
+ (((uint32_t) buf[2]) << 16) + (((uint32_t) buf[3]) << 24)); |
|
|
|
return u.f; |
|
} |
|
|
|
static void float_to_bytes(float param_val, uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
float f; |
|
uint8_t u8[sizeof(float)]; |
|
} u; |
|
|
|
u.f = param_val; |
|
for(uint8_t i = 0; i < sizeof(float); i++) |
|
{ |
|
buf[i] = u.u8[i]; |
|
} |
|
// Convert to LITTLE ENDIAN |
|
/* FIXME: What the hell? */ |
|
for(uint8_t i = 0; i < sizeof(float); i++) |
|
{ |
|
buf[i] = buf[(sizeof(float) - 1) - i]; |
|
} |
|
}
|
|
|