You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

684 lines
23 KiB

/*
* em7180.c
*
* Created on: Jan 18, 2021
* Author: Daniel Peter Chokola
*
* Adapted From:
* EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly
* by: Kris Winer
* 06/29/2017 Copyright Tlera Corporation
*
* Library may be used freely and without limit with attribution.
*/
/* Includes */
#include <stdint.h>
#include <stdbool.h>
#include <math.h>
#include "em7180_common.h"
#include "em7180.h"
#include "i2c.h"
/* Data Structures */
/* Private Global Variables */
/* Function Prototypes */
static void em7180_passthrough(em7180_t *em7180);
static float uint32_reg_to_float(uint8_t *buf);
static void float_to_bytes(float param_val, uint8_t *buf);
/* Function Definitions */
void em7180_init(em7180_t *em7180, I2C_HandleTypeDef *hi2c, lsm6dsm_t *lsm6dsm,
lis2mdl_t *lis2mdl, lps22hb_t *lps22hb, uint16_t acc_fs,
uint16_t gyro_fs, uint16_t mag_fs, uint8_t q_rate_div,
uint8_t mag_rate, uint8_t acc_rate, uint8_t gyro_rate,
uint8_t baro_rate)
{
return_if_fail(em7180);
em7180->hi2c = hi2c;
em7180->lsm6dsm = lsm6dsm;
em7180->lis2mdl = lis2mdl;
em7180->lps22hb = lps22hb;
em7180->acc_fs = acc_fs;
em7180->gyro_fs = gyro_fs;
em7180->mag_fs = mag_fs;
em7180->q_rate_div = q_rate_div;
em7180->mag_rate = mag_rate;
em7180->acc_rate = acc_rate;
em7180->gyro_rate = gyro_rate;
em7180->baro_rate = baro_rate;
/* configure the EM7180 */
em7180_config(em7180);
/* enter passthrough mode */
em7180_passthrough(em7180);
/* and configure the devices on the slave bus */
if(em7180->lsm6dsm)
{
lsm6dsm_config(em7180->lsm6dsm, em7180->hi2c);
}
if(em7180->lis2mdl)
{
lis2mdl_config(em7180->lis2mdl, em7180->hi2c);
}
if(em7180->lps22hb)
{
lps22hb_config(em7180->lps22hb, em7180->hi2c);
}
}
void em7180_config(em7180_t *em7180)
{
uint8_t runStatus;
uint8_t algoStatus;
uint8_t passthruStatus;
uint8_t eventStatus;
uint8_t sensorStatus;
// Enter EM7180 initialized state
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers
/* Legacy MPU6250 stuff, it seems
// Setup LPF bandwidth (BEFORE setting ODR's)
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz */
// Set accel/gyro/mag desired ODR rates
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_QRateDivisor,
em7180->q_rate_div); // quat rate = gyroRt/(1 QRTDiv)
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_MagRate,
em7180->mag_rate); // 0x64 = 100 Hz
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AccelRate,
em7180->acc_rate); // 200/10 Hz, 0x14 = 200 Hz
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_GyroRate,
em7180->gyro_rate); // 200/10 Hz, 0x14 = 200 Hz
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_BaroRate,
0x80 | em7180->baro_rate); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz
// Configure operating mode
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data
// Enable interrupt to host upon certain events
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10),
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_EnableEvents, 0x07);
// Enable EM7180 run mode
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode
HAL_Delay(100);
// EM7180 parameter adjustments
/* Serial.println("Beginning Parameter Adjustments"); */
// Disable stillness mode for balancing robot application
em7180_set_integer_param(em7180, 0x49, 0x00);
// Write desired sensor full scale ranges to the EM7180
em7180_mag_acc_set_fs(em7180, em7180->mag_fs, em7180->acc_fs); // 1000 uT == 0x3E8, 8 g == 0x08
em7180_gyro_set_fs(em7180, em7180->gyro_fs); // 2000 dps == 0x7D0
// Read EM7180 status
runStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RunStatus);
if(runStatus & 0x01)
{
/* Serial.println(" EM7180 run status = normal mode"); */
}
algoStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_AlgorithmStatus);
if(algoStatus & 0x01)
{
/* Serial.println(" EM7180 standby status"); */
}
if(algoStatus & 0x02)
{
/* Serial.println(" EM7180 algorithm slow"); */
}
if(algoStatus & 0x04)
{
/* Serial.println(" EM7180 in stillness mode"); */
}
if(algoStatus & 0x08)
{
/* Serial.println(" EM7180 mag calibration completed"); */
}
if(algoStatus & 0x10)
{
/* Serial.println(" EM7180 magnetic anomaly detected"); */
}
if(algoStatus & 0x20)
{
/* Serial.println(" EM7180 unreliable sensor data"); */
}
passthruStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_PassThruStatus);
if(passthruStatus & 0x01)
{
/* Serial.print(" EM7180 in passthru mode!"); */
}
eventStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_EventStatus);
if(eventStatus & 0x01)
{
/* Serial.println(" EM7180 CPU reset"); */
}
if(eventStatus & 0x02)
{
/* Serial.println(" EM7180 Error"); */
}
if(eventStatus & 0x04)
{
/* Serial.println(" EM7180 new quaternion result"); */
}
if(eventStatus & 0x08)
{
/* Serial.println(" EM7180 new mag result"); */
}
if(eventStatus & 0x10)
{
/* Serial.println(" EM7180 new accel result"); */
}
if(eventStatus & 0x20)
{
/* Serial.println(" EM7180 new gyro result"); */
}
HAL_Delay(1000); // give some time to read the screen
// Check sensor status
sensorStatus = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_SensorStatus);
/* Serial.print(" EM7180 sensor status = "); */
/* Serial.println(sensorStatus); */
if(sensorStatus & 0x01)
{
/* Serial.print("Magnetometer not acknowledging!"); */
}
if(sensorStatus & 0x02)
{
/* Serial.print("Accelerometer not acknowledging!"); */
}
if(sensorStatus & 0x04)
{
/* Serial.print("Gyro not acknowledging!"); */
}
if(sensorStatus & 0x10)
{
/* Serial.print("Magnetometer ID not recognized!"); */
}
if(sensorStatus & 0x20)
{
/* Serial.print("Accelerometer ID not recognized!"); */
}
if(sensorStatus & 0x40)
{
/* Serial.print("Gyro ID not recognized!"); */
}
/* Serial.print("Actual MagRate = "); */
/* Serial.print(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualMagRate)); */
/* Serial.println(" Hz"); */
/* Serial.print("Actual AccelRate = "); */
/* Serial.print(10 * i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualAccelRate)); */
/* Serial.println(" Hz"); */
/* Serial.print("Actual GyroRate = "); */
/* Serial.print(10 * i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualGyroRate)); */
/* Serial.println(" Hz"); */
/* Serial.print("Actual BaroRate = "); */
/* Serial.print(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualBaroRate)); */
/* Serial.println(" Hz"); */
}
#if(0)
void em7180_chip_id_get(em7180_t *em7180)
{
// Read SENtral device information
uint16_t ROM1 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ROMVersion1);
uint16_t ROM2 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ROMVersion2);
/* Serial.print("EM7180 ROM Version: 0x"); */
/* Serial.print(ROM1, HEX); */
/* Serial.println(ROM2, HEX); */
/* Serial.println("Should be: 0xE609"); */
uint16_t RAM1 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RAMVersion1);
uint16_t RAM2 = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RAMVersion2);
/* Serial.print("EM7180 RAM Version: 0x"); */
/* Serial.print(RAM1); */
/* Serial.println(RAM2); */
uint8_t PID = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ProductID);
/* Serial.print("EM7180 ProductID: 0x"); */
/* Serial.print(PID, HEX); */
/* Serial.println(" Should be: 0x80"); */
uint8_t RID = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_RevisionID);
/* Serial.print("EM7180 RevisionID: 0x"); */
/* Serial.print(RID, HEX); */
/* Serial.println(" Should be: 0x02"); */
}
#endif
void em7180_load_fw_from_eeprom(em7180_t *em7180)
{
// Check which sensors can be detected by the EM7180
uint8_t featureflag = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_FeatureFlags);
if(featureflag & 0x01)
{
/* Serial.println("A barometer is installed"); */
}
if(featureflag & 0x02)
{
/* Serial.println("A humidity sensor is installed"); */
}
if(featureflag & 0x04)
{
/* Serial.println("A temperature sensor is installed"); */
}
if(featureflag & 0x08)
{
/* Serial.println("A custom sensor is installed"); */
}
if(featureflag & 0x10)
{
/* Serial.println("A second custom sensor is installed"); */
}
if(featureflag & 0x20)
{
/* Serial.println("A third custom sensor is installed"); */
}
HAL_Delay(1000); // give some time to read the screen
// Check SENtral status, make sure EEPROM upload of firmware was accomplished
uint8_t STAT = (i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_SentralStatus)
& 0x01);
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x01)
{
/* Serial.println("EEPROM detected on the sensor bus!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x02)
{
/* Serial.println("EEPROM uploaded config file!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)
{
/* Serial.println("EEPROM CRC incorrect!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x08)
{
/* Serial.println("EM7180 in initialized state!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x10)
{
/* Serial.println("No EEPROM detected!"); */
}
int count = 0;
while(!STAT)
{
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ResetRequest, 0x01);
HAL_Delay(500);
count++;
STAT = (i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_SentralStatus)
& 0x01);
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x01)
{
/* Serial.println("EEPROM detected on the sensor bus!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x02)
{
/* Serial.println("EEPROM uploaded config file!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)
{
/* Serial.println("EEPROM CRC incorrect!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x08)
{
/* Serial.println("EM7180 in initialized state!"); */
}
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus) & 0x10)
{
/* Serial.println("No EEPROM detected!"); */
}
if(count > 10)
{
break;
}
}
if(!(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_SentralStatus)
& 0x04))
{
/* Serial.println("EEPROM upload successful!"); */
}
}
uint8_t em7180_status(em7180_t *em7180)
{
// Check event status register, way to check data ready by polling rather than interrupt
uint8_t c = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt
return c;
}
uint8_t em7180_errors(em7180_t *em7180)
{
uint8_t c = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_ErrorRegister); // check error register
return c;
}
void em7180_gyro_set_fs(em7180_t *em7180, uint16_t gyro_fs)
{
uint8_t bytes[4], STAT;
bytes[0] = gyro_fs & (0xFF);
bytes[1] = (gyro_fs >> 8) & (0xFF);
bytes[2] = 0x00;
bytes[3] = 0x00;
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0,
bytes[0]); // Gyro LSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1,
bytes[1]); // Gyro MSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2,
bytes[2]); // Unused
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3,
bytes[3]); // Unused
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); // Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a parameter write process
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT == 0xCB))
{
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_ParamAcknowledge);
}
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void em7180_mag_acc_set_fs(em7180_t *em7180, uint16_t mag_fs, uint16_t acc_fs)
{
uint8_t bytes[4], STAT;
bytes[0] = mag_fs & (0xFF);
bytes[1] = (mag_fs >> 8) & (0xFF);
bytes[2] = acc_fs & (0xFF);
bytes[3] = (acc_fs >> 8) & (0xFF);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0,
bytes[0]); // Mag LSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1,
bytes[1]); // Mag MSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2,
bytes[2]); // Acc LSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3,
bytes[3]); // Acc MSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); // Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT == 0xCA))
{
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_ParamAcknowledge);
}
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void em7180_set_integer_param(em7180_t *em7180, uint8_t param,
uint32_t param_val)
{
uint8_t bytes[4], STAT;
bytes[0] = param_val & (0xFF);
bytes[1] = (param_val >> 8) & (0xFF);
bytes[2] = (param_val >> 16) & (0xFF);
bytes[3] = (param_val >> 24) & (0xFF);
param = param | 0x80; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0,
bytes[0]); // Param LSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1,
bytes[1]);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2,
bytes[2]);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3,
bytes[3]); // Param MSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, param);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT == param))
{
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_ParamAcknowledge);
}
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void em7180_param_set_float(em7180_t *em7180, uint8_t param, float param_val)
{
uint8_t bytes[4], STAT;
float_to_bytes(param_val, &bytes[0]);
param = param | 0x80; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte0,
bytes[0]); // Param LSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte1,
bytes[1]);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte2,
bytes[2]);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_LoadParamByte3,
bytes[3]); // Param MSB
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, param);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer procedure
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamAcknowledge); // Check the parameter acknowledge register and loop until the result matches parameter request byte
while(!(STAT == param))
{
STAT = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_ParamAcknowledge);
}
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ParamRequest, 0x00); // Parameter request = 0 to end parameter transfer process
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm
}
void em7180_quatdata_get(em7180_t *em7180, float *destination)
{
uint8_t data[16]; // x/y/z quaternion register data stored here
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_QX, data, 16); // Read the sixteen raw data registers into data array
destination[1] = uint32_reg_to_float(&data[0]);
destination[2] = uint32_reg_to_float(&data[4]);
destination[3] = uint32_reg_to_float(&data[8]);
destination[0] = uint32_reg_to_float(&data[12]); // SENtral stores quats as qx, qy, qz, q0!
}
void em7180_acceldata_get(em7180_t *em7180, int16_t *destination)
{
uint8_t data[6]; // x/y/z accel register data stored here
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_AX, data, 6); // Read the six raw data registers into data array
destination[0] = (int16_t) (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t) data[3] << 8) | data[2]);
destination[2] = (int16_t) (((int16_t) data[5] << 8) | data[4]);
}
void em7180_gyrodata_get(em7180_t *em7180, int16_t *destination)
{
uint8_t data[6]; // x/y/z gyro register data stored here
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_GX, data, 6); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t) data[3] << 8) | data[2]);
destination[2] = (int16_t) (((int16_t) data[5] << 8) | data[4]);
}
void em7180_magdata_get(em7180_t *em7180, int16_t *destination)
{
uint8_t data[6]; // x/y/z mag register data stored here
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_MX, data, 6); // Read the six raw data registers sequentially into data array
destination[0] = (int16_t) (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value
destination[1] = (int16_t) (((int16_t) data[3] << 8) | data[2]);
destination[2] = (int16_t) (((int16_t) data[5] << 8) | data[4]);
}
float em7180_mres_get(uint8_t Mscale)
{
float m_res;
switch(Mscale)
{
/*
* Possible magnetometer scales (and their register bit settings) are:
* 14 bit resolution (0) and 16 bit resolution (1)
*/
case MFS_14BITS:
m_res = 10. * 4912. / 8190.; // Proper scale to return milliGauss
break;
case MFS_16BITS:
m_res = 10. * 4912. / 32760.0; // Proper scale to return milliGauss
break;
default:
m_res = NAN;
break;
}
return m_res;
}
float em7180_gres_get(uint8_t gscale)
{
float g_res;
switch(gscale)
{
/*
* Possible gyro scales (and their register bit settings) are:
* 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
* Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value:
*/
case GFS_250DPS:
g_res = 250.0 / 32768.0;
break;
case GFS_500DPS:
g_res = 500.0 / 32768.0;
break;
case GFS_1000DPS:
g_res = 1000.0 / 32768.0;
break;
case GFS_2000DPS:
g_res = 2000.0 / 32768.0;
break;
default:
g_res = NAN;
break;
}
return g_res;
}
float em7180_ares_get(uint8_t ascale)
{
float a_res;
switch(ascale)
{
/*
* Possible accelerometer scales (and their register bit settings) are:
* 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
* Here's a bit of an algorithm to calculate DPS/(ADC tick) based on that 2-bit value:
*/
case AFS_2G:
a_res = 2.0 / 32768.0;
break;
case AFS_4G:
a_res = 4.0 / 32768.0;
break;
case AFS_8G:
a_res = 8.0 / 32768.0;
break;
case AFS_16G:
a_res = 16.0 / 32768.0;
break;
default:
a_res = NAN;
break;
}
return a_res;
}
int16_t em7180_baro_get(em7180_t *em7180)
{
uint8_t data[2]; // baro register data stored here
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_Baro, data, 2); // Read the two raw data registers sequentially into data array
return (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value
}
int16_t em7180_temp_get(em7180_t *em7180)
{
uint8_t data[2]; // temp register data stored here
i2c_read(em7180->hi2c, EM7180_ADDRESS, EM7180_Temp, data, 2); // Read the two raw data registers sequentially into data array
return (((int16_t) data[1] << 8) | data[0]); // Turn the MSB and LSB into a signed 16-bit value
}
static void em7180_passthrough(em7180_t *em7180)
{
// First put SENtral in standby mode
uint8_t c = i2c_read_byte(em7180->hi2c, EM7180_ADDRESS,
EM7180_AlgorithmControl);
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_AlgorithmControl,
c | 0x01);
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
/* // Serial.print("c = "); Serial.println(c); */
// Verify standby status
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
/* Serial.println("SENtral in standby mode"); */
// Place SENtral in pass-through mode
i2c_write_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_PassThruControl, 0x01);
if(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01)
{
/* Serial.println("SENtral in pass-through mode"); */
}
else
{
/* Serial.println("ERROR! SENtral not in pass-through mode!"); */
}
}
static float uint32_reg_to_float(uint8_t *buf)
{
union
{
uint32_t ui32;
float f;
} u;
u.ui32 = (((uint32_t) buf[0]) + (((uint32_t) buf[1]) << 8)
+ (((uint32_t) buf[2]) << 16) + (((uint32_t) buf[3]) << 24));
return u.f;
}
static void float_to_bytes(float param_val, uint8_t *buf)
{
union
{
float f;
uint8_t u8[sizeof(float)];
} u;
u.f = param_val;
for(uint8_t i = 0; i < sizeof(float); i++)
{
buf[i] = u.u8[i];
}
// Convert to LITTLE ENDIAN
/* FIXME: What the hell? */
for(uint8_t i = 0; i < sizeof(float); i++)
{
buf[i] = buf[(sizeof(float) - 1) - i];
}
}