You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1012 lines
36 KiB
1012 lines
36 KiB
/* |
|
* em7180.c |
|
* |
|
* Created on: Jan 18, 2021 |
|
* Author: Daniel Peter Chokola |
|
* |
|
* Adapted From: |
|
* EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly |
|
* by: Kris Winer |
|
* 06/29/2017 Copyright Tlera Corporation |
|
* |
|
* Library may be used freely and without limit with attribution. |
|
*/ |
|
|
|
/* Includes */ |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <math.h> |
|
#include "em7180.h" |
|
|
|
/* Private Global Variables */ |
|
static uint8_t _intPin; |
|
static bool _passThru; |
|
static float _aRes; |
|
static float _gRes; |
|
static float _mRes; |
|
static uint8_t _Mmode; |
|
static float _fuseROMx; |
|
static float _fuseROMy; |
|
static float _fuseROMz; |
|
static float _q[4]; |
|
static float _beta; |
|
static float _deltat; |
|
static float _Kp; |
|
static float _Ki; |
|
|
|
/* Function Prototypes */ |
|
static void m24512dfm_write_byte(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t data); |
|
static void m24512dfm_write(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest); |
|
static uint8_t m24512dfm_read_byte(uint8_t device_address, |
|
uint8_t data_address1, uint8_t data_address2); |
|
static void m24512dfm_read(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest); |
|
static uint8_t em7180_read_byte(uint8_t address, uint8_t subAddress); |
|
static void em7180_read(uint8_t address, uint8_t subAddress, uint8_t count, |
|
uint8_t *dest); |
|
|
|
/* Function Definitions */ |
|
em7180_new(uint8_t pin, bool passthru) |
|
{ |
|
/* pinMode(pin, INPUT); */ |
|
_intPin = pin; |
|
_passThru = passthru; |
|
} |
|
|
|
void em7180_chip_id_get() |
|
{ |
|
// Read SENtral device information |
|
uint16_t ROM1 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ROMVersion1); |
|
uint16_t ROM2 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ROMVersion2); |
|
/* Serial.print("EM7180 ROM Version: 0x"); */ |
|
/* Serial.print(ROM1, HEX); */ |
|
/* Serial.println(ROM2, HEX); */ |
|
/* Serial.println("Should be: 0xE609"); */ |
|
uint16_t RAM1 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RAMVersion1); |
|
uint16_t RAM2 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RAMVersion2); |
|
/* Serial.print("EM7180 RAM Version: 0x"); */ |
|
/* Serial.print(RAM1); */ |
|
/* Serial.println(RAM2); */ |
|
uint8_t PID = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ProductID); |
|
/* Serial.print("EM7180 ProductID: 0x"); */ |
|
/* Serial.print(PID, HEX); */ |
|
/* Serial.println(" Should be: 0x80"); */ |
|
uint8_t RID = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RevisionID); |
|
/* Serial.print("EM7180 RevisionID: 0x"); */ |
|
/* Serial.print(RID, HEX); */ |
|
/* Serial.println(" Should be: 0x02"); */ |
|
} |
|
|
|
void em7180_load_fw_from_eeprom() |
|
{ |
|
// Check which sensors can be detected by the EM7180 |
|
uint8_t featureflag = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_FeatureFlags); |
|
if(featureflag & 0x01) |
|
{ |
|
/* Serial.println("A barometer is installed"); */ |
|
} |
|
if(featureflag & 0x02) |
|
{ |
|
/* Serial.println("A humidity sensor is installed"); */ |
|
} |
|
if(featureflag & 0x04) |
|
{ |
|
/* Serial.println("A temperature sensor is installed"); */ |
|
} |
|
if(featureflag & 0x08) |
|
{ |
|
/* Serial.println("A custom sensor is installed"); */ |
|
} |
|
if(featureflag & 0x10) |
|
{ |
|
/* Serial.println("A second custom sensor is installed"); */ |
|
} |
|
if(featureflag & 0x20) |
|
{ |
|
/* Serial.println("A third custom sensor is installed"); */ |
|
} |
|
|
|
HAL_Delay(1000); // give some time to read the screen |
|
|
|
// Check SENtral status, make sure EEPROM upload of firmware was accomplished |
|
uint8_t STAT = (lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) |
|
& 0x01); |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) |
|
{ |
|
/* Serial.println("EEPROM detected on the sensor bus!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) |
|
{ |
|
/* Serial.println("EEPROM uploaded config file!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) |
|
{ |
|
/* Serial.println("EEPROM CRC incorrect!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) |
|
{ |
|
/* Serial.println("EM7180 in initialized state!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) |
|
{ |
|
/* Serial.println("No EEPROM detected!"); */ |
|
} |
|
int count = 0; |
|
while(!STAT) |
|
{ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); |
|
HAL_Delay(500); |
|
count++; |
|
STAT = (lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) |
|
{ |
|
/* Serial.println("EEPROM detected on the sensor bus!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) |
|
{ |
|
/* Serial.println("EEPROM uploaded config file!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) |
|
{ |
|
/* Serial.println("EEPROM CRC incorrect!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) |
|
{ |
|
/* Serial.println("EM7180 in initialized state!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) |
|
{ |
|
/* Serial.println("No EEPROM detected!"); */ |
|
} |
|
if(count > 10) |
|
{ |
|
break; |
|
} |
|
} |
|
|
|
if(!(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) |
|
{ |
|
/* Serial.println("EEPROM upload successful!"); */ |
|
} |
|
} |
|
|
|
uint8_t em7180_status() |
|
{ |
|
// Check event status register, way to check data ready by polling rather than interrupt |
|
uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt |
|
return c; |
|
} |
|
|
|
uint8_t em7180_errors() |
|
{ |
|
uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ErrorRegister); // check error register |
|
return c; |
|
} |
|
|
|
void em7180_init(uint8_t accBW, uint8_t gyroBW, uint16_t accFS, uint16_t gyroFS, |
|
uint16_t magFS, uint8_t QRtDiv, uint8_t magRt, uint8_t accRt, |
|
uint8_t gyroRt, uint8_t baroRt) |
|
{ |
|
uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges |
|
uint8_t param[4]; |
|
|
|
// Enter EM7180 initialized state |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers |
|
|
|
//Setup LPF bandwidth (BEFORE setting ODR's) |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz |
|
// Set accel/gyro/mag desired ODR rates |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_QRateDivisor, QRtDiv); // quat rate = gyroRt/(1 QRTDiv) |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_MagRate, magRt); // 0x64 = 100 Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AccelRate, accRt); // 200/10 Hz, 0x14 = 200 Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_GyroRate, gyroRt); // 200/10 Hz, 0x14 = 200 Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | baroRt); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz |
|
|
|
// Configure operating mode |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data |
|
// Enable interrupt to host upon certain events |
|
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), |
|
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); |
|
// Enable EM7180 run mode |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode |
|
HAL_Delay(100); |
|
|
|
// EM7180 parameter adjustments |
|
/* Serial.println("Beginning Parameter Adjustments"); */ |
|
|
|
// Read sensor default FS values from parameter space |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process |
|
uint8_t param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4A)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_mag_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
EM7180_acc_fs = ((int16_t) (param[3] << 8) | param[2]); |
|
/* Serial.print("Magnetometer Default Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_mag_fs); */ |
|
/* Serial.println("uT"); */ |
|
/* Serial.print("Accelerometer Default Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_acc_fs); */ |
|
/* Serial.println("g"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4B)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_gyro_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
/* Serial.print("Gyroscope Default Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_gyro_fs); */ |
|
/* Serial.println("dps"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm |
|
|
|
//Disable stillness mode for balancing robot application |
|
EM7180_set_integer_param(0x49, 0x00); |
|
|
|
//Write desired sensor full scale ranges to the EM7180 |
|
EM7180_set_mag_acc_FS(magFS, accFS); // 1000 uT == 0x3E8, 8 g == 0x08 |
|
EM7180_set_gyro_FS(gyroFS); // 2000 dps == 0x7D0 |
|
|
|
// Read sensor new FS values from parameter space |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4A)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_mag_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
EM7180_acc_fs = ((int16_t) (param[3] << 8) | param[2]); |
|
/* Serial.print("Magnetometer New Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_mag_fs); */ |
|
/* Serial.println("uT"); */ |
|
/* Serial.print("Accelerometer New Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_acc_fs); */ |
|
/* Serial.println("g"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4B)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_gyro_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
/* Serial.print("Gyroscope New Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_gyro_fs); */ |
|
/* Serial.println("dps"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm |
|
|
|
// Read EM7180 status |
|
uint8_t runStatus = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RunStatus); |
|
if(runStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 run status = normal mode"); */ |
|
} |
|
uint8_t algoStatus = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_AlgorithmStatus); |
|
if(algoStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 standby status"); */ |
|
} |
|
if(algoStatus & 0x02) |
|
{ |
|
/* Serial.println(" EM7180 algorithm slow"); */ |
|
} |
|
if(algoStatus & 0x04) |
|
{ |
|
/* Serial.println(" EM7180 in stillness mode"); */ |
|
} |
|
if(algoStatus & 0x08) |
|
{ |
|
/* Serial.println(" EM7180 mag calibration completed"); */ |
|
} |
|
if(algoStatus & 0x10) |
|
{ |
|
/* Serial.println(" EM7180 magnetic anomaly detected"); */ |
|
} |
|
if(algoStatus & 0x20) |
|
{ |
|
/* Serial.println(" EM7180 unreliable sensor data"); */ |
|
} |
|
uint8_t passthruStatus = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_PassThruStatus); |
|
if(passthruStatus & 0x01) |
|
{ |
|
/* Serial.print(" EM7180 in passthru mode!"); */ |
|
} |
|
uint8_t eventStatus = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_EventStatus); |
|
if(eventStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 CPU reset"); */ |
|
} |
|
if(eventStatus & 0x02) |
|
{ |
|
/* Serial.println(" EM7180 Error"); */ |
|
} |
|
if(eventStatus & 0x04) |
|
{ |
|
/* Serial.println(" EM7180 new quaternion result"); */ |
|
} |
|
if(eventStatus & 0x08) |
|
{ |
|
/* Serial.println(" EM7180 new mag result"); */ |
|
} |
|
if(eventStatus & 0x10) |
|
{ |
|
/* Serial.println(" EM7180 new accel result"); */ |
|
} |
|
if(eventStatus & 0x20) |
|
{ |
|
/* Serial.println(" EM7180 new gyro result"); */ |
|
} |
|
|
|
HAL_Delay(1000); // give some time to read the screen |
|
|
|
// Check sensor status |
|
uint8_t sensorStatus = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_SensorStatus); |
|
/* Serial.print(" EM7180 sensor status = "); */ |
|
/* Serial.println(sensorStatus); */ |
|
if(sensorStatus & 0x01) |
|
{ |
|
/* Serial.print("Magnetometer not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x02) |
|
{ |
|
/* Serial.print("Accelerometer not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x04) |
|
{ |
|
/* Serial.print("Gyro not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x10) |
|
{ |
|
/* Serial.print("Magnetometer ID not recognized!"); */ |
|
} |
|
if(sensorStatus & 0x20) |
|
{ |
|
/* Serial.print("Accelerometer ID not recognized!"); */ |
|
} |
|
if(sensorStatus & 0x40) |
|
{ |
|
/* Serial.print("Gyro ID not recognized!"); */ |
|
} |
|
|
|
/* Serial.print("Actual MagRate = "); */ |
|
/* Serial.print(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualMagRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual AccelRate = "); */ |
|
/* Serial.print(10 * lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualAccelRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual GyroRate = "); */ |
|
/* Serial.print(10 * lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualGyroRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual BaroRate = "); */ |
|
/* Serial.print(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualBaroRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
} |
|
|
|
float em7180_uint32_reg_to_float(uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
uint32_t ui32; |
|
float f; |
|
} u; |
|
|
|
u.ui32 = (((uint32_t) buf[0]) + (((uint32_t) buf[1]) << 8) |
|
+ (((uint32_t) buf[2]) << 16) + (((uint32_t) buf[3]) << 24)); |
|
return u.f; |
|
} |
|
|
|
float em7180_int32_reg_to_float(uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
int32_t i32; |
|
float f; |
|
} u; |
|
|
|
u.i32 = (((int32_t) buf[0]) + (((int32_t) buf[1]) << 8) |
|
+ (((int32_t) buf[2]) << 16) + (((int32_t) buf[3]) << 24)); |
|
return u.f; |
|
} |
|
|
|
void em7180_float_to_bytes(float param_val, uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
float f; |
|
uint8_t comp[sizeof(float)]; |
|
} u; |
|
u.f = param_val; |
|
for(uint8_t i = 0; i < sizeof(float); i++) |
|
{ |
|
buf[i] = u.comp[i]; |
|
} |
|
//Convert to LITTLE ENDIAN |
|
for(uint8_t i = 0; i < sizeof(float); i++) |
|
{ |
|
buf[i] = buf[(sizeof(float) - 1) - i]; |
|
} |
|
} |
|
|
|
void em7180_gyro_set_fs(uint16_t gyro_fs) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = gyro_fs & (0xFF); |
|
bytes[1] = (gyro_fs >> 8) & (0xFF); |
|
bytes[2] = 0x00; |
|
bytes[3] = 0x00; |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == 0xCB)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_mag_acc_set_fs(uint16_t mag_fs, uint16_t acc_fs) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = mag_fs & (0xFF); |
|
bytes[1] = (mag_fs >> 8) & (0xFF); |
|
bytes[2] = acc_fs & (0xFF); |
|
bytes[3] = (acc_fs >> 8) & (0xFF); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == 0xCA)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_set_integer_param(uint8_t param, uint32_t param_val) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = param_val & (0xFF); |
|
bytes[1] = (param_val >> 8) & (0xFF); |
|
bytes[2] = (param_val >> 16) & (0xFF); |
|
bytes[3] = (param_val >> 24) & (0xFF); |
|
param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, param); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == param)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_param_set_float(uint8_t param, float param_val) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
float_to_bytes(param_val, &bytes[0]); |
|
param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, param); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == param)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_quatdata_get(float *destination) |
|
{ |
|
uint8_t rawData[16]; // x/y/z quaternion register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array |
|
destination[1] = uint32_reg_to_float(&rawData[0]); |
|
destination[2] = uint32_reg_to_float(&rawData[4]); |
|
destination[3] = uint32_reg_to_float(&rawData[8]); |
|
destination[0] = uint32_reg_to_float(&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! |
|
|
|
} |
|
|
|
void em7180_acceldata_get(int16_t *destination) |
|
{ |
|
uint8_t rawData[6]; // x/y/z accel register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array |
|
destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); |
|
destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); |
|
} |
|
|
|
void em7180_gyrodata_get(int16_t *destination) |
|
{ |
|
uint8_t rawData[6]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
|
destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); |
|
destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); |
|
} |
|
|
|
void em7180_magdata_get(int16_t *destination) |
|
{ |
|
uint8_t rawData[6]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
|
destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); |
|
destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); |
|
} |
|
|
|
float em7180_mres_get(uint8_t Mscale) |
|
{ |
|
switch(Mscale) |
|
{ |
|
// Possible magnetometer scales (and their register bit settings) are: |
|
// 14 bit resolution (0) and 16 bit resolution (1) |
|
case MFS_14BITS: |
|
_mRes = 10. * 4912. / 8190.; // Proper scale to return milliGauss |
|
return _mRes; |
|
break; |
|
case MFS_16BITS: |
|
_mRes = 10. * 4912. / 32760.0; // Proper scale to return milliGauss |
|
return _mRes; |
|
break; |
|
} |
|
} |
|
|
|
float em7180_gres_get(uint8_t gscale) |
|
{ |
|
switch(gscale) |
|
{ |
|
// Possible gyro scales (and their register bit settings) are: |
|
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). |
|
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
|
case GFS_250DPS: |
|
_gRes = 250.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
case GFS_500DPS: |
|
_gRes = 500.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
case GFS_1000DPS: |
|
_gRes = 1000.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
case GFS_2000DPS: |
|
_gRes = 2000.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
} |
|
} |
|
|
|
float em7180_ares_get(uint8_t ascale) |
|
{ |
|
switch(ascale) |
|
{ |
|
// Possible accelerometer scales (and their register bit settings) are: |
|
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). |
|
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
|
case AFS_2G: |
|
_aRes = 2.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
case AFS_4G: |
|
_aRes = 4.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
case AFS_8G: |
|
_aRes = 8.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
case AFS_16G: |
|
_aRes = 16.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
} |
|
} |
|
|
|
int16_t em7180_baro_get() |
|
{ |
|
uint8_t rawData[2]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_Baro, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
|
return (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
} |
|
|
|
int16_t em7180_temp_get() |
|
{ |
|
uint8_t rawData[2]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_Temp, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
|
return (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
} |
|
|
|
void em7180_passthrough() |
|
{ |
|
// First put SENtral in standby mode |
|
uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_AlgorithmControl); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01); |
|
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); |
|
/* // Serial.print("c = "); Serial.println(c); */ |
|
// Verify standby status |
|
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) { |
|
/* Serial.println("SENtral in standby mode"); */ |
|
// Place SENtral in pass-through mode |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) |
|
{ |
|
/* Serial.println("SENtral in pass-through mode"); */ |
|
} |
|
else |
|
{ |
|
/* Serial.println("ERROR! SENtral not in pass-through mode!"); */ |
|
} |
|
} |
|
|
|
// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor |
|
// since the address is defined by two bytes |
|
static void m24512dfm_write_byte(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t data) |
|
{ |
|
uint8_t temp[2] = { data_address1, data_address2 }; |
|
/* Wire.transfer(device_address, &temp[0], 2, NULL, 0); */ |
|
/* Wire.transfer(device_address, &data, 1, NULL, 0); */ |
|
} |
|
|
|
static void m24512dfm_write(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest) |
|
{ |
|
if(count > 128) |
|
{ |
|
count = 128; |
|
/* Serial.print("Page count cannot be more than 128 bytes!"); */ |
|
} |
|
uint8_t temp[2] = { data_address1, data_address2 }; |
|
/* Wire.transfer(device_address, &temp[0], 2, NULL, 0); */ |
|
/* Wire.transfer(device_address, &dest[0], count, NULL, 0); */ |
|
} |
|
|
|
static uint8_t m24512dfm_read_byte(uint8_t device_address, |
|
uint8_t data_address1, uint8_t data_address2) |
|
{ |
|
uint8_t data; // `data` will store the register data |
|
/* Wire.beginTransmission(device_address); // Initialize the Tx buffer */ |
|
/* Wire.write(data_address1); // Put slave register address in Tx buffer */ |
|
/* Wire.write(data_address2); // Put slave register address in Tx buffer */ |
|
/* Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive */ |
|
/* Wire.requestFrom(device_address, 1); // Read one byte from slave register address */ |
|
/* data = Wire.read(); // Fill Rx buffer with result */ |
|
return data; // Return data read from slave register |
|
} |
|
|
|
static void m24512dfm_read(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest) |
|
{ |
|
uint8_t temp[2] = { data_address1, data_address2 }; |
|
/* Wire.transfer(device_address, &temp[0], 2, dest, count); */ |
|
} |
|
|
|
// I2C read/write functions for the EM7180 |
|
void em7180_write_byte(uint8_t address, uint8_t subAddress, uint8_t data) |
|
{ |
|
uint8_t temp[2]; |
|
temp[0] = subAddress; |
|
temp[1] = data; |
|
/* Wire.transfer(address, &temp[0], 2, NULL, 0); */ |
|
} |
|
|
|
static uint8_t em7180_read_byte(uint8_t address, uint8_t subAddress) |
|
{ |
|
uint8_t temp[1]; |
|
/* Wire.transfer(address, &subAddress, 1, &temp[0], 1); */ |
|
return temp[0]; |
|
} |
|
|
|
static void em7180_read(uint8_t address, uint8_t subAddress, uint8_t count, |
|
uint8_t *dest) |
|
{ |
|
/* Wire.transfer(address, &subAddress, 1, dest, count); */ |
|
} |
|
|
|
// Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" |
|
// (see http://www.x-io.co.uk/category/open-source/ for examples and more details) |
|
// which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute |
|
// device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. |
|
// The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms |
|
// but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! |
|
__attribute__((optimize("O3"))) void em7180_update_quat_madgwick(float ax, |
|
float ay, |
|
float az, |
|
float gx, |
|
float gy, |
|
float gz, |
|
float mx, |
|
float my, |
|
float mz) |
|
{ |
|
float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability |
|
float norm; |
|
float hx, hy, _2bx, _2bz; |
|
float s1, s2, s3, s4; |
|
float qDot1, qDot2, qDot3, qDot4; |
|
|
|
// Auxiliary variables to avoid repeated arithmetic |
|
float _2q1mx; |
|
float _2q1my; |
|
float _2q1mz; |
|
float _2q2mx; |
|
float _4bx; |
|
float _4bz; |
|
float _2q1 = 2.0f * q1; |
|
float _2q2 = 2.0f * q2; |
|
float _2q3 = 2.0f * q3; |
|
float _2q4 = 2.0f * q4; |
|
float _2q1q3 = 2.0f * q1 * q3; |
|
float _2q3q4 = 2.0f * q3 * q4; |
|
float q1q1 = q1 * q1; |
|
float q1q2 = q1 * q2; |
|
float q1q3 = q1 * q3; |
|
float q1q4 = q1 * q4; |
|
float q2q2 = q2 * q2; |
|
float q2q3 = q2 * q3; |
|
float q2q4 = q2 * q4; |
|
float q3q3 = q3 * q3; |
|
float q3q4 = q3 * q4; |
|
float q4q4 = q4 * q4; |
|
|
|
// Normalize accelerometer measurement |
|
norm = sqrt(ax * ax + ay * ay + az * az); |
|
if(norm == 0.0f) |
|
{ |
|
return; // handle NaN |
|
} |
|
norm = 1.0f / norm; |
|
ax *= norm; |
|
ay *= norm; |
|
az *= norm; |
|
|
|
// Normalize magnetometer measurement |
|
norm = sqrt(mx * mx + my * my + mz * mz); |
|
if(norm == 0.0f) |
|
{ |
|
return; // handle NaN |
|
} |
|
norm = 1.0f / norm; |
|
mx *= norm; |
|
my *= norm; |
|
mz *= norm; |
|
|
|
// Reference direction of Earth's magnetic field |
|
_2q1mx = 2.0f * q1 * mx; |
|
_2q1my = 2.0f * q1 * my; |
|
_2q1mz = 2.0f * q1 * mz; |
|
_2q2mx = 2.0f * q2 * mx; |
|
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 |
|
+ _2q2 * mz * q4 |
|
- mx * q3q3 - mx * q4q4; |
|
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 |
|
+ my * q3q3 + _2q3 * mz * q4 |
|
- my * q4q4; |
|
_2bx = sqrt(hx * hx + hy * hy); |
|
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 |
|
+ _2q3 * my * q4 |
|
- mz * q3q3 |
|
+ mz * q4q4; |
|
_4bx = 2.0f * _2bx; |
|
_4bz = 2.0f * _2bz; |
|
|
|
// Gradient decent algorithm corrective step |
|
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) |
|
+ _2q2 * (2.0f * q1q2 + _2q3q4 - ay) |
|
- _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) |
|
+ (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) |
|
+ _2bz * (q1q2 + q3q4) |
|
- my) |
|
+ _2bx * q3 |
|
* (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
|
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) |
|
- 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) |
|
+ _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) |
|
+ (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) |
|
+ _2bz * (q1q2 + q3q4) |
|
- my) |
|
+ (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) |
|
+ _2bz * (0.5f - q2q2 - q3q3) |
|
- mz); |
|
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) |
|
+ _2q4 * (2.0f * q1q2 + _2q3q4 - ay) |
|
- 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) |
|
+ (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) |
|
+ _2bz * (q2q4 - q1q3) |
|
- mx) |
|
+ (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) |
|
+ _2bz * (q1q2 + q3q4) |
|
- my) |
|
+ (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) |
|
+ _2bz * (0.5f - q2q2 - q3q3) |
|
- mz); |
|
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) |
|
+ _2q3 * (2.0f * q1q2 + _2q3q4 - ay) |
|
+ (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) |
|
+ _2bz * (q2q4 - q1q3) |
|
- mx) |
|
+ (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) |
|
+ _2bz * (q1q2 + q3q4) |
|
- my) |
|
+ _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
|
norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalize step magnitude |
|
norm = 1.0f / norm; |
|
s1 *= norm; |
|
s2 *= norm; |
|
s3 *= norm; |
|
s4 *= norm; |
|
|
|
// Compute rate of change of quaternion |
|
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - _beta * s1; |
|
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - _beta * s2; |
|
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - _beta * s3; |
|
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - _beta * s4; |
|
|
|
// Integrate to yield quaternion |
|
q1 += qDot1 * _deltat; |
|
q2 += qDot2 * _deltat; |
|
q3 += qDot3 * _deltat; |
|
q4 += qDot4 * _deltat; |
|
norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalize quaternion |
|
norm = 1.0f / norm; |
|
_q[0] = q1 * norm; |
|
_q[1] = q2 * norm; |
|
_q[2] = q3 * norm; |
|
_q[3] = q4 * norm; |
|
|
|
} |
|
|
|
// Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and |
|
// measured ones. |
|
void em7180_update_quat_mahony(float ax, float ay, float az, float gx, float gy, |
|
float gz, float mx, float my, float mz) |
|
{ |
|
float q1 = _q[0], q2 = _q[1], q3 = _q[2], q4 = _q[3]; // short name local variable for readability |
|
float eInt[3] = { 0.0f, 0.0f, 0.0f }; // vector to hold integral error for Mahony method |
|
float norm; |
|
float hx, hy, bx, bz; |
|
float vx, vy, vz, wx, wy, wz; |
|
float ex, ey, ez; |
|
float pa, pb, pc; |
|
|
|
// Auxiliary variables to avoid repeated arithmetic |
|
float q1q1 = q1 * q1; |
|
float q1q2 = q1 * q2; |
|
float q1q3 = q1 * q3; |
|
float q1q4 = q1 * q4; |
|
float q2q2 = q2 * q2; |
|
float q2q3 = q2 * q3; |
|
float q2q4 = q2 * q4; |
|
float q3q3 = q3 * q3; |
|
float q3q4 = q3 * q4; |
|
float q4q4 = q4 * q4; |
|
|
|
// Normalize accelerometer measurement |
|
norm = sqrt(ax * ax + ay * ay + az * az); |
|
if(norm == 0.0f) |
|
{ |
|
return; // handle NaN |
|
} |
|
norm = 1.0f / norm; // use reciprocal for division |
|
ax *= norm; |
|
ay *= norm; |
|
az *= norm; |
|
|
|
// Normalize magnetometer measurement |
|
norm = sqrt(mx * mx + my * my + mz * mz); |
|
if(norm == 0.0f) |
|
{ |
|
return; // handle NaN |
|
} |
|
norm = 1.0f / norm; // use reciprocal for division |
|
mx *= norm; |
|
my *= norm; |
|
mz *= norm; |
|
|
|
// Reference direction of Earth's magnetic field |
|
hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) |
|
+ 2.0f * mz * (q2q4 + q1q3); |
|
hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) |
|
+ 2.0f * mz * (q3q4 - q1q2); |
|
bx = sqrt((hx * hx) + (hy * hy)); |
|
bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) |
|
+ 2.0f * mz * (0.5f - q2q2 - q3q3); |
|
|
|
// Estimated direction of gravity and magnetic field |
|
vx = 2.0f * (q2q4 - q1q3); |
|
vy = 2.0f * (q1q2 + q3q4); |
|
vz = q1q1 - q2q2 - q3q3 + q4q4; |
|
wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); |
|
wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); |
|
wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); |
|
|
|
// Error is cross product between estimated direction and measured direction of gravity |
|
ex = (ay * vz - az * vy) + (my * wz - mz * wy); |
|
ey = (az * vx - ax * vz) + (mz * wx - mx * wz); |
|
ez = (ax * vy - ay * vx) + (mx * wy - my * wx); |
|
if(_Ki > 0.0f) |
|
{ |
|
eInt[0] += ex; // accumulate integral error |
|
eInt[1] += ey; |
|
eInt[2] += ez; |
|
} |
|
else |
|
{ |
|
eInt[0] = 0.0f; // prevent integral wind up |
|
eInt[1] = 0.0f; |
|
eInt[2] = 0.0f; |
|
} |
|
|
|
// Apply feedback terms |
|
gx = gx + _Kp * ex + _Ki * eInt[0]; |
|
gy = gy + _Kp * ey + _Ki * eInt[1]; |
|
gz = gz + _Kp * ez + _Ki * eInt[2]; |
|
|
|
// Integrate rate of change of quaternion |
|
pa = q2; |
|
pb = q3; |
|
pc = q4; |
|
q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * _deltat); |
|
q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * _deltat); |
|
q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * _deltat); |
|
q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * _deltat); |
|
|
|
// Normalize quaternion |
|
norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); |
|
norm = 1.0f / norm; |
|
_q[0] = q1 * norm; |
|
_q[1] = q2 * norm; |
|
_q[2] = q3 * norm; |
|
_q[3] = q4 * norm; |
|
}
|
|
|