/*! * \file radio_driver.c * * \brief radio driver implementation * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) */ /** ****************************************************************************** * * Portions COPYRIGHT 2020 STMicroelectronics * * @file radio_driver.c * @author MCD Application Team * @brief radio driver implementation ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "radio_conf.h" #include "radio_driver.h" /* External variables ---------------------------------------------------------*/ /*! * \brief Sughz handler */ extern SUBGHZ_HandleTypeDef hsubghz; /* Private typedef -----------------------------------------------------------*/ /*! * FSK bandwidth definition */ typedef struct FskBandwidth_s { uint32_t bandwidth; uint8_t RegValue; } FskBandwidth_t; /* Private define ------------------------------------------------------------*/ /** * @brief drive value used anytime radio is NOT in TX low power mode * @note SMPS_DRIVE_SETTING_DEFAULT can be redefined in radio_conf.h */ #ifndef SMPS_DRIVE_SETTING_DEFAULT #define SMPS_DRIVE_SETTING_DEFAULT SMPS_DRV_40 #endif /* SMPS_DRIVE_SETTING_DEFAULT */ /** * @brief drive value used anytime radio is in TX low power mode * TX low power mode is the worst case because the PA sinks from SMPS * while in high power mode, current is sunk directly from the battery * @note SMPS_DRIVE_SETTING_MAX can be redefined in radio_conf.h */ #ifndef SMPS_DRIVE_SETTING_MAX #define SMPS_DRIVE_SETTING_MAX SMPS_DRV_60 #endif /* SMPS_DRIVE_SETTING_MAX */ /** * @brief Provides the frequency of the chip running on the radio and the frequency step * @remark These defines are used for computing the frequency divider to set the RF frequency * @note XTAL_FREQ can be redefined in radio_conf.h */ #ifndef XTAL_FREQ #define XTAL_FREQ ( 32000000UL ) #endif /* XTAL_FREQ */ /** * @brief in XO mode, set internal capacitor (from 0x00 to 0x2F starting 11.2pF with 0.47pF steps) * @note XTAL_DEFAULT_CAP_VALUE can be redefined in radio_conf.h */ #ifndef XTAL_DEFAULT_CAP_VALUE #define XTAL_DEFAULT_CAP_VALUE ( 0x20UL ) #endif /* XTAL_DEFAULT_CAP_VALUE */ /** * @brief voltage of vdd tcxo. * @note TCXO_CTRL_VOLTAGE can be redefined in radio_conf.h */ #ifndef TCXO_CTRL_VOLTAGE #define TCXO_CTRL_VOLTAGE TCXO_CTRL_1_7V #endif /* TCXO_CTRL_VOLTAGE */ /** * @brief Radio maximum wakeup time (in ms) * @note RF_WAKEUP_TIME can be redefined in radio_conf.h */ #ifndef RF_WAKEUP_TIME #define RF_WAKEUP_TIME ( 10UL ) #endif /* RF_WAKEUP_TIME */ /** * @brief DCDC is present and enabled * @remark this define is only used if the DCDC is present on the board * @note DCDC_ENABLE can be redefined in radio_conf.h */ #ifndef DCDC_ENABLE #define DCDC_ENABLE ( 1UL ) #endif /* DCDC_ENABLE */ /* Private macro -------------------------------------------------------------*/ #define SX_FREQ_TO_CHANNEL( channel, freq ) \ do \ { \ channel = (uint32_t) ((((uint64_t) freq)<<25)/(XTAL_FREQ) ); \ }while( 0 ) /* Private variables ---------------------------------------------------------*/ /*! * \brief Holds the internal operating mode of the radio */ static RadioOperatingModes_t OperatingMode; /*! * \brief Stores the current packet type set in the radio */ static RadioPacketTypes_t PacketType; /*! * \brief Stores the current packet header type set in the radio */ static volatile RadioLoRaPacketLengthsMode_t LoRaHeaderType; /*! * \brief Stores the last frequency error measured on LoRa received packet */ volatile uint32_t FrequencyError = 0; /*! * \brief Hold the status of the Image calibration */ static bool ImageCalibrated = false; /*! * Precomputed FSK bandwidth registers values */ static const FskBandwidth_t FskBandwidths[] = { { 4800 , 0x1F }, { 5800 , 0x17 }, { 7300 , 0x0F }, { 9700 , 0x1E }, { 11700 , 0x16 }, { 14600 , 0x0E }, { 19500 , 0x1D }, { 23400 , 0x15 }, { 29300 , 0x0D }, { 39000 , 0x1C }, { 46900 , 0x14 }, { 58600 , 0x0C }, { 78200 , 0x1B }, { 93800 , 0x13 }, { 117300, 0x0B }, { 156200, 0x1A }, { 187200, 0x12 }, { 234300, 0x0A }, { 312000, 0x19 }, { 373600, 0x11 }, { 467000, 0x09 }, { 500000, 0x00 }, // Invalid Bandwidth }; /* Private function prototypes -----------------------------------------------*/ /*! * \brief This set SMPS drive capability wrt. RF mode */ static void Radio_SMPS_Set( uint8_t level ); /*! * \brief IRQ Callback radio function */ static DioIrqHandler RadioOnDioIrqCb; /*! * \brief Write command to the radio * * \param [in] SetCommand The Write Command * \param [out] buffer A pointer command buffer * \param [in] size Size in byte of the command buffer */ static void SUBGRF_WriteCommand( SUBGHZ_RadioSetCmd_t Command, uint8_t *pBuffer, uint16_t Size ); /*! * \brief Read command to the radio * * \param [in] GetCommand The Read Command * \param [out] buffer A pointer command buffer * \param [in] size Size in byte of the command buffer */ static void SUBGRF_ReadCommand( SUBGHZ_RadioGetCmd_t Command, uint8_t *pBuffer, uint16_t Size ); /* Exported functions ---------------------------------------------------------*/ void SUBGRF_Init( DioIrqHandler dioIrq ) { if ( dioIrq != NULL) { RadioOnDioIrqCb = dioIrq; } RADIO_INIT(); /* set default SMPS current drive to default*/ Radio_SMPS_Set(SMPS_DRIVE_SETTING_DEFAULT); ImageCalibrated = false; SUBGRF_SetStandby( STDBY_RC ); // Initialize TCXO control if (1U == RBI_IsTCXO() ) { SUBGRF_SetTcxoMode( TCXO_CTRL_VOLTAGE, RF_WAKEUP_TIME << 6 );// 100 ms SUBGRF_WriteRegister( REG_XTA_TRIM, 0x00 ); /*enable calibration for cut1.1 and later*/ CalibrationParams_t calibParam; calibParam.Value = 0x7F; SUBGRF_Calibrate( calibParam ); } else { SUBGRF_WriteRegister( REG_XTA_TRIM, XTAL_DEFAULT_CAP_VALUE ); SUBGRF_WriteRegister( REG_XTB_TRIM, XTAL_DEFAULT_CAP_VALUE ); } /* Init RF Switch */ RBI_Init(); OperatingMode = MODE_STDBY_RC; } RadioOperatingModes_t SUBGRF_GetOperatingMode( void ) { return OperatingMode; } void SUBGRF_SetPayload( uint8_t *payload, uint8_t size ) { SUBGRF_WriteBuffer( 0x00, payload, size ); } uint8_t SUBGRF_GetPayload( uint8_t *buffer, uint8_t *size, uint8_t maxSize ) { uint8_t offset = 0; SUBGRF_GetRxBufferStatus( size, &offset ); if( *size > maxSize ) { return 1; } SUBGRF_ReadBuffer( offset, buffer, *size ); return 0; } void SUBGRF_SendPayload( uint8_t *payload, uint8_t size, uint32_t timeout) { SUBGRF_SetPayload( payload, size ); SUBGRF_SetTx( timeout ); } uint8_t SUBGRF_SetSyncWord( uint8_t *syncWord ) { SUBGRF_WriteRegisters( REG_LR_SYNCWORDBASEADDRESS, syncWord, 8 ); return 0; } void SUBGRF_SetCrcSeed( uint16_t seed ) { uint8_t buf[2]; buf[0] = ( uint8_t )( ( seed >> 8 ) & 0xFF ); buf[1] = ( uint8_t )( seed & 0xFF ); switch( SUBGRF_GetPacketType( ) ) { case PACKET_TYPE_GFSK: SUBGRF_WriteRegisters( REG_LR_CRCSEEDBASEADDR, buf, 2 ); break; default: break; } } void SUBGRF_SetCrcPolynomial( uint16_t polynomial ) { uint8_t buf[2]; buf[0] = ( uint8_t )( ( polynomial >> 8 ) & 0xFF ); buf[1] = ( uint8_t )( polynomial & 0xFF ); switch( SUBGRF_GetPacketType( ) ) { case PACKET_TYPE_GFSK: SUBGRF_WriteRegisters( REG_LR_CRCPOLYBASEADDR, buf, 2 ); break; default: break; } } void SUBGRF_SetWhiteningSeed( uint16_t seed ) { uint8_t regValue = 0; switch( SUBGRF_GetPacketType( ) ) { case PACKET_TYPE_GFSK: regValue = SUBGRF_ReadRegister( REG_LR_WHITSEEDBASEADDR_MSB ) & 0xFE; regValue = ( ( seed >> 8 ) & 0x01 ) | regValue; SUBGRF_WriteRegister( REG_LR_WHITSEEDBASEADDR_MSB, regValue ); // only 1 bit. SUBGRF_WriteRegister( REG_LR_WHITSEEDBASEADDR_LSB, (uint8_t)seed ); break; default: break; } } uint32_t SUBGRF_GetRandom( void ) { uint32_t number = 0; uint8_t regAnaLna = 0; uint8_t regAnaMixer = 0; regAnaLna = SUBGRF_ReadRegister( REG_ANA_LNA ); SUBGRF_WriteRegister( REG_ANA_LNA, regAnaLna & ~( 1 << 0 ) ); regAnaMixer = SUBGRF_ReadRegister( REG_ANA_MIXER ); SUBGRF_WriteRegister( REG_ANA_MIXER, regAnaMixer & ~( 1 << 7 ) ); // Set radio in continuous reception SUBGRF_SetRx( 0xFFFFFF ); // Rx Continuous SUBGRF_ReadRegisters( RANDOM_NUMBER_GENERATORBASEADDR, ( uint8_t* )&number, 4 ); SUBGRF_SetStandby( STDBY_RC ); SUBGRF_WriteRegister( REG_ANA_LNA, regAnaLna ); SUBGRF_WriteRegister( REG_ANA_MIXER, regAnaMixer ); return number; } void SUBGRF_SetSleep( SleepParams_t sleepConfig ) { /* switch the antenna OFF by SW */ RBI_ConfigRFSwitch(RBI_SWITCH_OFF); Radio_SMPS_Set(SMPS_DRIVE_SETTING_DEFAULT); uint8_t value = ( ( ( uint8_t )sleepConfig.Fields.WarmStart << 2 ) | ( ( uint8_t )sleepConfig.Fields.Reset << 1 ) | ( ( uint8_t )sleepConfig.Fields.WakeUpRTC ) ); SUBGRF_WriteCommand( RADIO_SET_SLEEP, &value, 1 ); OperatingMode = MODE_SLEEP; } void SUBGRF_SetStandby( RadioStandbyModes_t standbyConfig ) { SUBGRF_WriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 ); if( standbyConfig == STDBY_RC ) { OperatingMode = MODE_STDBY_RC; } else { OperatingMode = MODE_STDBY_XOSC; } } void SUBGRF_SetFs( void ) { SUBGRF_WriteCommand( RADIO_SET_FS, 0, 0 ); OperatingMode = MODE_FS; } void SUBGRF_SetTx( uint32_t timeout ) { uint8_t buf[3]; OperatingMode = MODE_TX; buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( timeout & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_TX, buf, 3 ); } void SUBGRF_SetRx( uint32_t timeout ) { uint8_t buf[3]; OperatingMode = MODE_RX; buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( timeout & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_RX, buf, 3 ); } void SUBGRF_SetRxBoosted( uint32_t timeout ) { uint8_t buf[3]; OperatingMode = MODE_RX; /* ST_WORKAROUND_BEGIN: Sigfox patch > 0x96 replaced by 0x97 */ SUBGRF_WriteRegister( REG_RX_GAIN, 0x97 ); // max LNA gain, increase current by ~2mA for around ~3dB in sensitivity /* ST_WORKAROUND_END */ buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( timeout & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_RX, buf, 3 ); } void SUBGRF_SetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime ) { uint8_t buf[6]; buf[0] = ( uint8_t )( ( rxTime >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( rxTime >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( rxTime & 0xFF ); buf[3] = ( uint8_t )( ( sleepTime >> 16 ) & 0xFF ); buf[4] = ( uint8_t )( ( sleepTime >> 8 ) & 0xFF ); buf[5] = ( uint8_t )( sleepTime & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 6 ); OperatingMode = MODE_RX_DC; } void SUBGRF_SetCad( void ) { SUBGRF_WriteCommand( RADIO_SET_CAD, 0, 0 ); OperatingMode = MODE_CAD; } void SUBGRF_SetTxContinuousWave( void ) { SUBGRF_WriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 ); } void SUBGRF_SetTxInfinitePreamble( void ) { SUBGRF_WriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 ); } void SUBGRF_SetStopRxTimerOnPreambleDetect( bool enable ) { SUBGRF_WriteCommand( RADIO_SET_STOPRXTIMERONPREAMBLE, ( uint8_t* )&enable, 1 ); } void SUBGRF_SetLoRaSymbNumTimeout( uint8_t symbNum ) { SUBGRF_WriteCommand( RADIO_SET_LORASYMBTIMEOUT, &symbNum, 1 ); if( symbNum >= 64 ) { uint8_t mant = symbNum >> 1; uint8_t exp = 0; uint8_t reg = 0; while( mant > 31 ) { mant >>= 2; exp++; } reg = exp + ( mant << 3 ); SUBGRF_WriteRegister( REG_LR_SYNCH_TIMEOUT, reg ); } } void SUBGRF_SetRegulatorMode( void ) { /* ST_WORKAROUND_BEGIN: Get RegulatorMode value from RBI */ RadioRegulatorMode_t mode; if ( ( 1UL == RBI_IsDCDC() ) && ( 1UL == DCDC_ENABLE ) ) { mode = USE_DCDC ; } else { mode = USE_LDO ; } /* ST_WORKAROUND_END */ SUBGRF_WriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 ); } void SUBGRF_Calibrate( CalibrationParams_t calibParam ) { uint8_t value = ( ( ( uint8_t )calibParam.Fields.ImgEnable << 6 ) | ( ( uint8_t )calibParam.Fields.ADCBulkPEnable << 5 ) | ( ( uint8_t )calibParam.Fields.ADCBulkNEnable << 4 ) | ( ( uint8_t )calibParam.Fields.ADCPulseEnable << 3 ) | ( ( uint8_t )calibParam.Fields.PLLEnable << 2 ) | ( ( uint8_t )calibParam.Fields.RC13MEnable << 1 ) | ( ( uint8_t )calibParam.Fields.RC64KEnable ) ); SUBGRF_WriteCommand( RADIO_CALIBRATE, &value, 1 ); } void SUBGRF_CalibrateImage( uint32_t freq ) { uint8_t calFreq[2]; if( freq > 900000000 ) { calFreq[0] = 0xE1; calFreq[1] = 0xE9; } else if( freq > 850000000 ) { calFreq[0] = 0xD7; calFreq[1] = 0xDB; } else if( freq > 770000000 ) { calFreq[0] = 0xC1; calFreq[1] = 0xC5; } else if( freq > 460000000 ) { calFreq[0] = 0x75; calFreq[1] = 0x81; } else if( freq > 425000000 ) { calFreq[0] = 0x6B; calFreq[1] = 0x6F; } SUBGRF_WriteCommand( RADIO_CALIBRATEIMAGE, calFreq, 2 ); } void SUBGRF_SetPaConfig( uint8_t paDutyCycle, uint8_t hpMax, uint8_t deviceSel, uint8_t paLut ) { uint8_t buf[4]; buf[0] = paDutyCycle; buf[1] = hpMax; buf[2] = deviceSel; buf[3] = paLut; SUBGRF_WriteCommand( RADIO_SET_PACONFIG, buf, 4 ); } void SUBGRF_SetRxTxFallbackMode( uint8_t fallbackMode ) { SUBGRF_WriteCommand( RADIO_SET_TXFALLBACKMODE, &fallbackMode, 1 ); } void SUBGRF_SetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask ) { uint8_t buf[8]; buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF ); buf[1] = ( uint8_t )( irqMask & 0x00FF ); buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF ); buf[3] = ( uint8_t )( dio1Mask & 0x00FF ); buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF ); buf[5] = ( uint8_t )( dio2Mask & 0x00FF ); buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF ); buf[7] = ( uint8_t )( dio3Mask & 0x00FF ); SUBGRF_WriteCommand( RADIO_CFG_DIOIRQ, buf, 8 ); } uint16_t SUBGRF_GetIrqStatus( void ) { uint8_t irqStatus[2]; SUBGRF_ReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 ); return ( irqStatus[0] << 8 ) | irqStatus[1]; } void SUBGRF_SetTcxoMode (RadioTcxoCtrlVoltage_t tcxoVoltage, uint32_t timeout ) { uint8_t buf[4]; buf[0] = tcxoVoltage & 0x07; buf[1] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[2] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[3] = ( uint8_t )( timeout & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_TCXOMODE, buf, 4 ); } void SUBGRF_SetRfFrequency( uint32_t frequency ) { uint8_t buf[4]; uint32_t chan = 0; if( ImageCalibrated == false ) { SUBGRF_CalibrateImage( frequency ); ImageCalibrated = true; } /* ST_WORKAROUND_BEGIN: Simplified frequency calculation */ SX_FREQ_TO_CHANNEL(chan, frequency); /* ST_WORKAROUND_END */ buf[0] = ( uint8_t )( ( chan >> 24 ) & 0xFF ); buf[1] = ( uint8_t )( ( chan >> 16 ) & 0xFF ); buf[2] = ( uint8_t )( ( chan >> 8 ) & 0xFF ); buf[3] = ( uint8_t )( chan & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_RFFREQUENCY, buf, 4 ); } void SUBGRF_SetPacketType( RadioPacketTypes_t packetType ) { // Save packet type internally to avoid questioning the radio PacketType = packetType; if( packetType == PACKET_TYPE_GFSK ) { SUBGRF_WriteRegister( REG_BIT_SYNC, 0x00 ); } SUBGRF_WriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 ); } RadioPacketTypes_t SUBGRF_GetPacketType( void ) { return PacketType; } void SUBGRF_SetTxParams( uint8_t paSelect, int8_t power, RadioRampTimes_t rampTime ) { uint8_t buf[2]; if( paSelect == RFO_LP ) { if( power == 15 ) { SUBGRF_SetPaConfig( 0x06, 0x00, 0x01, 0x01 ); } else { SUBGRF_SetPaConfig( 0x04, 0x00, 0x01, 0x01 ); } if( power >= 14 ) { power = 14; } else if( power < -17 ) { power = -17; } SUBGRF_WriteRegister( REG_OCP, 0x18 ); // current max is 80 mA for the whole device } else // rfo_hp { // WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2 // RegTxClampConfig = @address 0x08D8 SUBGRF_WriteRegister( REG_TX_CLAMP, SUBGRF_ReadRegister( REG_TX_CLAMP ) | ( 0x0F << 1 ) ); // WORKAROUND END SUBGRF_SetPaConfig( 0x04, 0x07, 0x00, 0x01 ); if( power > 22 ) { power = 22; } else if( power < -9 ) { power = -9; } SUBGRF_WriteRegister( REG_OCP, 0x38 ); // current max 160mA for the whole device } buf[0] = power; buf[1] = ( uint8_t )rampTime; SUBGRF_WriteCommand( RADIO_SET_TXPARAMS, buf, 2 ); } void SUBGRF_SetModulationParams( ModulationParams_t *modulationParams ) { uint8_t n; uint32_t tempVal = 0; uint8_t buf[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Check if required configuration corresponds to the stored packet type // If not, silently update radio packet type if( PacketType != modulationParams->PacketType ) { SUBGRF_SetPacketType( modulationParams->PacketType ); } switch( modulationParams->PacketType ) { case PACKET_TYPE_GFSK: n = 8; tempVal = ( uint32_t )(( 32 * XTAL_FREQ ) / modulationParams->Params.Gfsk.BitRate ); buf[0] = ( tempVal >> 16 ) & 0xFF; buf[1] = ( tempVal >> 8 ) & 0xFF; buf[2] = tempVal & 0xFF; buf[3] = modulationParams->Params.Gfsk.ModulationShaping; buf[4] = modulationParams->Params.Gfsk.Bandwidth; /* ST_WORKAROUND_BEGIN: Simplified frequency calculation */ SX_FREQ_TO_CHANNEL(tempVal, modulationParams->Params.Gfsk.Fdev); /* ST_WORKAROUND_END */ buf[5] = ( tempVal >> 16 ) & 0xFF; buf[6] = ( tempVal >> 8 ) & 0xFF; buf[7] = ( tempVal& 0xFF ); SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n ); break; case PACKET_TYPE_BPSK: n = 4; tempVal = ( uint32_t ) (( 32 * XTAL_FREQ) / modulationParams->Params.Bpsk.BitRate ); buf[0] = ( tempVal >> 16 ) & 0xFF; buf[1] = ( tempVal >> 8 ) & 0xFF; buf[2] = tempVal & 0xFF; buf[3] = modulationParams->Params.Bpsk.ModulationShaping; SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n ); break; case PACKET_TYPE_LORA: n = 4; buf[0] = modulationParams->Params.LoRa.SpreadingFactor; buf[1] = modulationParams->Params.LoRa.Bandwidth; buf[2] = modulationParams->Params.LoRa.CodingRate; buf[3] = modulationParams->Params.LoRa.LowDatarateOptimize; SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n ); break; case PACKET_TYPE_GMSK: n = 5; tempVal = ( uint32_t )(( 32 *XTAL_FREQ) / modulationParams->Params.Gfsk.BitRate ); buf[0] = ( tempVal >> 16 ) & 0xFF; buf[1] = ( tempVal >> 8 ) & 0xFF; buf[2] = tempVal & 0xFF; buf[3] = modulationParams->Params.Gfsk.ModulationShaping; buf[4] = modulationParams->Params.Gfsk.Bandwidth; SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n ); break; default: case PACKET_TYPE_NONE: break; } } void SUBGRF_SetPacketParams( PacketParams_t *packetParams ) { uint8_t n; uint8_t crcVal = 0; uint8_t buf[9] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Check if required configuration corresponds to the stored packet type // If not, silently update radio packet type if( PacketType != packetParams->PacketType ) { SUBGRF_SetPacketType( packetParams->PacketType ); } switch( packetParams->PacketType ) { case PACKET_TYPE_GMSK: case PACKET_TYPE_GFSK: if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_IBM ) { SUBGRF_SetCrcSeed( CRC_IBM_SEED ); SUBGRF_SetCrcPolynomial( CRC_POLYNOMIAL_IBM ); crcVal = RADIO_CRC_2_BYTES; } else if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_CCIT ) { SUBGRF_SetCrcSeed( CRC_CCITT_SEED ); SUBGRF_SetCrcPolynomial( CRC_POLYNOMIAL_CCITT ); crcVal = RADIO_CRC_2_BYTES_INV; } else { crcVal = packetParams->Params.Gfsk.CrcLength; } n = 9; buf[0] = ( packetParams->Params.Gfsk.PreambleLength >> 8 ) & 0xFF; buf[1] = packetParams->Params.Gfsk.PreambleLength; buf[2] = packetParams->Params.Gfsk.PreambleMinDetect; buf[3] = ( packetParams->Params.Gfsk.SyncWordLength /*<< 3*/ ); // convert from byte to bit buf[4] = packetParams->Params.Gfsk.AddrComp; buf[5] = packetParams->Params.Gfsk.HeaderType; buf[6] = packetParams->Params.Gfsk.PayloadLength; buf[7] = crcVal; buf[8] = packetParams->Params.Gfsk.DcFree; break; case PACKET_TYPE_BPSK: n = 1; buf[0] = packetParams->Params.Bpsk.PayloadLength; break; case PACKET_TYPE_LORA: n = 6; buf[0] = ( packetParams->Params.LoRa.PreambleLength >> 8 ) & 0xFF; buf[1] = packetParams->Params.LoRa.PreambleLength; buf[2] = LoRaHeaderType = packetParams->Params.LoRa.HeaderType; buf[3] = packetParams->Params.LoRa.PayloadLength; buf[4] = packetParams->Params.LoRa.CrcMode; buf[5] = packetParams->Params.LoRa.InvertIQ; break; default: case PACKET_TYPE_NONE: return; } SUBGRF_WriteCommand( RADIO_SET_PACKETPARAMS, buf, n ); } void SUBGRF_SetCadParams( RadioLoRaCadSymbols_t cadSymbolNum, uint8_t cadDetPeak, uint8_t cadDetMin, RadioCadExitModes_t cadExitMode, uint32_t cadTimeout ) { uint8_t buf[7]; buf[0] = ( uint8_t )cadSymbolNum; buf[1] = cadDetPeak; buf[2] = cadDetMin; buf[3] = ( uint8_t )cadExitMode; buf[4] = ( uint8_t )( ( cadTimeout >> 16 ) & 0xFF ); buf[5] = ( uint8_t )( ( cadTimeout >> 8 ) & 0xFF ); buf[6] = ( uint8_t )( cadTimeout & 0xFF ); SUBGRF_WriteCommand( RADIO_SET_CADPARAMS, buf, 7 ); OperatingMode = MODE_CAD; } void SUBGRF_SetBufferBaseAddress( uint8_t txBaseAddress, uint8_t rxBaseAddress ) { uint8_t buf[2]; buf[0] = txBaseAddress; buf[1] = rxBaseAddress; SUBGRF_WriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 ); } RadioStatus_t SUBGRF_GetStatus( void ) { uint8_t stat = 0; RadioStatus_t status = { .Value = 0 }; /* ST_WORKAROUND_BEGIN: Read the Device Status by the GET_STATUS command (HAL limitations) */ SUBGRF_ReadCommand( RADIO_GET_STATUS, &stat, 1 ); /* ST_WORKAROUND_END */ status.Fields.CmdStatus = ( stat & ( 0x07 << 1 ) ) >> 1; status.Fields.ChipMode = ( stat & ( 0x07 << 4 ) ) >> 4; return status; } int8_t SUBGRF_GetRssiInst( void ) { uint8_t buf[1]; int8_t rssi = 0; SUBGRF_ReadCommand( RADIO_GET_RSSIINST, buf, 1 ); rssi = -buf[0] >> 1; return rssi; } void SUBGRF_GetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer ) { uint8_t status[2]; SUBGRF_ReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 ); // In case of LORA fixed header, the payloadLength is obtained by reading // the register REG_LR_PAYLOADLENGTH if( ( SUBGRF_GetPacketType( ) == PACKET_TYPE_LORA ) && ( LoRaHeaderType == LORA_PACKET_FIXED_LENGTH ) ) { *payloadLength = SUBGRF_ReadRegister( REG_LR_PAYLOADLENGTH ); } else { *payloadLength = status[0]; } *rxStartBufferPointer = status[1]; } void SUBGRF_GetPacketStatus( PacketStatus_t *pktStatus ) { uint8_t status[3]; SUBGRF_ReadCommand( RADIO_GET_PACKETSTATUS, status, 3 ); pktStatus->packetType = SUBGRF_GetPacketType( ); switch( pktStatus->packetType ) { case PACKET_TYPE_GFSK: pktStatus->Params.Gfsk.RxStatus = status[0]; pktStatus->Params.Gfsk.RssiSync = -status[1] >> 1; pktStatus->Params.Gfsk.RssiAvg = -status[2] >> 1; pktStatus->Params.Gfsk.FreqError = 0; break; case PACKET_TYPE_LORA: pktStatus->Params.LoRa.RssiPkt = -status[0] >> 1; // Returns SNR value [dB] rounded to the nearest integer value pktStatus->Params.LoRa.SnrPkt = ( ( ( int8_t )status[1] ) + 2 ) >> 2; pktStatus->Params.LoRa.SignalRssiPkt = -status[2] >> 1; pktStatus->Params.LoRa.FreqError = FrequencyError; break; default: case PACKET_TYPE_NONE: // In that specific case, we set everything in the pktStatus to zeros // and reset the packet type accordingly RADIO_MEMSET8( pktStatus, 0, sizeof( PacketStatus_t ) ); pktStatus->packetType = PACKET_TYPE_NONE; break; } } RadioError_t SUBGRF_GetDeviceErrors( void ) { uint8_t err[] = { 0, 0 }; RadioError_t error = { .Value = 0 }; SUBGRF_ReadCommand( RADIO_GET_ERROR, ( uint8_t * )err, 2 ); error.Fields.PaRamp = ( err[0] & ( 1 << 0 ) ) >> 0; error.Fields.PllLock = ( err[1] & ( 1 << 6 ) ) >> 6; error.Fields.XoscStart = ( err[1] & ( 1 << 5 ) ) >> 5; error.Fields.ImgCalib = ( err[1] & ( 1 << 4 ) ) >> 4; error.Fields.AdcCalib = ( err[1] & ( 1 << 3 ) ) >> 3; error.Fields.PllCalib = ( err[1] & ( 1 << 2 ) ) >> 2; error.Fields.Rc13mCalib = ( err[1] & ( 1 << 1 ) ) >> 1; error.Fields.Rc64kCalib = ( err[1] & ( 1 << 0 ) ) >> 0; return error; } void SUBGRF_ClearDeviceErrors( void ) { uint8_t buf[2] = { 0x00, 0x00 }; SUBGRF_WriteCommand( RADIO_CLR_ERROR, buf, 2 ); } void SUBGRF_ClearIrqStatus( uint16_t irq ) { uint8_t buf[2]; buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF ); buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF ); SUBGRF_WriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 ); } void SUBGRF_WriteRegister( uint16_t addr, uint8_t data ) { HAL_SUBGHZ_WriteRegisters( &hsubghz, addr, (uint8_t*)&data, 1 ); } uint8_t SUBGRF_ReadRegister( uint16_t addr ) { uint8_t data; HAL_SUBGHZ_ReadRegisters( &hsubghz, addr, &data, 1 ); return data; } void SUBGRF_WriteRegisters( uint16_t address, uint8_t *buffer, uint16_t size ) { CRITICAL_SECTION_BEGIN(); HAL_SUBGHZ_WriteRegisters( &hsubghz, address, buffer, size ); CRITICAL_SECTION_END(); } void SUBGRF_ReadRegisters( uint16_t address, uint8_t *buffer, uint16_t size ) { CRITICAL_SECTION_BEGIN(); HAL_SUBGHZ_ReadRegisters( &hsubghz, address, buffer, size ); CRITICAL_SECTION_END(); } void SUBGRF_WriteBuffer( uint8_t offset, uint8_t *buffer, uint8_t size ) { CRITICAL_SECTION_BEGIN(); HAL_SUBGHZ_WriteBuffer( &hsubghz, offset, buffer, size ); CRITICAL_SECTION_END(); } void SUBGRF_ReadBuffer( uint8_t offset, uint8_t *buffer, uint8_t size ) { CRITICAL_SECTION_BEGIN(); HAL_SUBGHZ_ReadBuffer( &hsubghz, offset, buffer, size ); CRITICAL_SECTION_END(); } void SUBGRF_WriteCommand( SUBGHZ_RadioSetCmd_t Command, uint8_t *pBuffer, uint16_t Size ) { CRITICAL_SECTION_BEGIN(); HAL_SUBGHZ_ExecSetCmd( &hsubghz, Command, pBuffer, Size ); CRITICAL_SECTION_END(); } void SUBGRF_ReadCommand( SUBGHZ_RadioGetCmd_t Command, uint8_t *pBuffer, uint16_t Size ) { CRITICAL_SECTION_BEGIN(); HAL_SUBGHZ_ExecGetCmd( &hsubghz, Command, pBuffer, Size ); CRITICAL_SECTION_END(); } void SUBGRF_SetSwitch( uint8_t paSelect, RFState_t rxtx ) { RBI_Switch_TypeDef state = RBI_SWITCH_RX; if (rxtx == RFSWITCH_TX) { if (paSelect == RFO_LP) { state = RBI_SWITCH_RFO_LP; Radio_SMPS_Set(SMPS_DRIVE_SETTING_MAX); } if (paSelect == RFO_HP) { state = RBI_SWITCH_RFO_HP; } } else { if (rxtx == RFSWITCH_RX) { state = RBI_SWITCH_RX; } } RBI_ConfigRFSwitch(state); } uint8_t SUBGRF_SetRfTxPower( int8_t power ) { uint8_t paSelect= RFO_LP; int32_t TxConfig = RBI_GetTxConfig(); switch (TxConfig) { case RBI_CONF_RFO_LP_HP: { if (power > 15) { paSelect = RFO_HP; } else { paSelect = RFO_LP; } break; } case RBI_CONF_RFO_LP: { paSelect = RFO_LP; break; } case RBI_CONF_RFO_HP: { paSelect = RFO_HP; break; } default: break; } SUBGRF_SetTxParams( paSelect, power, RADIO_RAMP_40_US ); return paSelect; } uint32_t SUBGRF_GetRadioWakeUpTime( void ) { return RF_WAKEUP_TIME; } /* HAL_SUBGHz Callbacks definitions */ void HAL_SUBGHZ_TxCpltCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_TX_DONE ); } void HAL_SUBGHZ_RxCpltCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_RX_DONE ); } void HAL_SUBGHZ_CRCErrorCallback (SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_CRC_ERROR); } void HAL_SUBGHZ_CADStatusCallback(SUBGHZ_HandleTypeDef *hsubghz, HAL_SUBGHZ_CadStatusTypeDef cadstatus) { switch (cadstatus) { case HAL_SUBGHZ_CAD_CLEAR: RadioOnDioIrqCb( IRQ_CAD_CLEAR); break; case HAL_SUBGHZ_CAD_DETECTED: RadioOnDioIrqCb( IRQ_CAD_DETECTED); break; default: break; } } void HAL_SUBGHZ_RxTxTimeoutCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_RX_TX_TIMEOUT ); } void HAL_SUBGHZ_HeaderErrorCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_HEADER_ERROR ); } void HAL_SUBGHZ_PreambleDetectedCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_PREAMBLE_DETECTED ); } void HAL_SUBGHZ_SyncWordValidCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_SYNCWORD_VALID ); } void HAL_SUBGHZ_HeaderValidCallback(SUBGHZ_HandleTypeDef *hsubghz) { RadioOnDioIrqCb( IRQ_HEADER_VALID ); } static void Radio_SMPS_Set(uint8_t level) { if ( 1U == RBI_IsDCDC() ) { uint8_t modReg; modReg= SUBGRF_ReadRegister(SUBGHZ_SMPSC2R); modReg&= (~SMPS_DRV_MASK); SUBGRF_WriteRegister(SUBGHZ_SMPSC2R, modReg | level); } } uint8_t SUBGRF_GetFskBandwidthRegValue( uint32_t bandwidth ) { uint8_t i; if( bandwidth == 0 ) { return( 0x1F ); } /* ST_WORKAROUND_BEGIN: Simplified loop */ for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ); i++ ) { if ( bandwidth < FskBandwidths[i].bandwidth ) { return FskBandwidths[i].RegValue; } } /* ST_WORKAROUND_END */ // ERROR: Value not found while( 1 ); } void SUBGRF_GetCFO( uint32_t bitRate, int32_t *cfo) { uint8_t BwMant[] = {4, 8, 10, 12}; /* read demod bandwidth: mant bit4:3, exp bits 2:0 */ uint8_t reg = (SUBGRF_ReadRegister( SUBGHZ_BWSEL )); uint8_t bandwidth_mant = BwMant[( reg >> 3 ) & 0x3]; uint8_t bandwidth_exp = reg & 0x7; uint32_t cf_fs = XTAL_FREQ / ( bandwidth_mant * ( 1 << ( bandwidth_exp - 1 ))); uint32_t cf_osr = cf_fs / bitRate; uint8_t interp = 1; /* calculate demod interpolation factor */ if (cf_osr * interp < 8) { interp = 2; } if (cf_osr * interp < 4) { interp = 4; } /* calculate demod sampling frequency */ uint32_t fs = cf_fs* interp; /* get the cfo registers */ int32_t cfo_bin = ( SUBGRF_ReadRegister( SUBGHZ_CFO_H ) & 0xF ) << 8; cfo_bin |= SUBGRF_ReadRegister( SUBGHZ_CFO_L ); /* negate if 12 bits sign bit is 1 */ if (( cfo_bin & 0x800 ) == 0x800 ) { cfo_bin |= 0xFFFFF000; } /* calculate cfo in Hz */ /* shift by 5 first to not saturate, cfo_bin on 12bits */ *cfo = ((int32_t)( cfo_bin * ( fs >> 5 ))) >> ( 12 - 5 ); } /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/