You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1093 lines
40 KiB
1093 lines
40 KiB
/** |
|
****************************************************************************** |
|
* @file stm32wlxx_hal_uart_ex.c |
|
* @author MCD Application Team |
|
* @brief Extended UART HAL module driver. |
|
* This file provides firmware functions to manage the following extended |
|
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). |
|
* + Initialization and de-initialization functions |
|
* + Peripheral Control functions |
|
* |
|
* |
|
****************************************************************************** |
|
* @attention |
|
* |
|
* Copyright (c) 2020 STMicroelectronics. |
|
* All rights reserved. |
|
* |
|
* This software is licensed under terms that can be found in the LICENSE file |
|
* in the root directory of this software component. |
|
* If no LICENSE file comes with this software, it is provided AS-IS. |
|
* |
|
****************************************************************************** |
|
@verbatim |
|
============================================================================== |
|
##### UART peripheral extended features ##### |
|
============================================================================== |
|
|
|
(#) Declare a UART_HandleTypeDef handle structure. |
|
|
|
(#) For the UART RS485 Driver Enable mode, initialize the UART registers |
|
by calling the HAL_RS485Ex_Init() API. |
|
|
|
(#) FIFO mode enabling/disabling and RX/TX FIFO threshold programming. |
|
|
|
-@- When UART operates in FIFO mode, FIFO mode must be enabled prior |
|
starting RX/TX transfers. Also RX/TX FIFO thresholds must be |
|
configured prior starting RX/TX transfers. |
|
|
|
@endverbatim |
|
****************************************************************************** |
|
*/ |
|
|
|
/* Includes ------------------------------------------------------------------*/ |
|
#include "stm32wlxx_hal.h" |
|
|
|
/** @addtogroup STM32WLxx_HAL_Driver |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup UARTEx UARTEx |
|
* @brief UART Extended HAL module driver |
|
* @{ |
|
*/ |
|
|
|
#ifdef HAL_UART_MODULE_ENABLED |
|
|
|
/* Private typedef -----------------------------------------------------------*/ |
|
/* Private define ------------------------------------------------------------*/ |
|
/** @defgroup UARTEX_Private_Constants UARTEx Private Constants |
|
* @{ |
|
*/ |
|
/* UART RX FIFO depth */ |
|
#define RX_FIFO_DEPTH 8U |
|
|
|
/* UART TX FIFO depth */ |
|
#define TX_FIFO_DEPTH 8U |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Private macros ------------------------------------------------------------*/ |
|
/* Private variables ---------------------------------------------------------*/ |
|
/* Private function prototypes -----------------------------------------------*/ |
|
/** @defgroup UARTEx_Private_Functions UARTEx Private Functions |
|
* @{ |
|
*/ |
|
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection); |
|
static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart); |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Exported functions --------------------------------------------------------*/ |
|
|
|
/** @defgroup UARTEx_Exported_Functions UARTEx Exported Functions |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup UARTEx_Exported_Functions_Group1 Initialization and de-initialization functions |
|
* @brief Extended Initialization and Configuration Functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Initialization and Configuration functions ##### |
|
=============================================================================== |
|
[..] |
|
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy |
|
in asynchronous mode. |
|
(+) For the asynchronous mode the parameters below can be configured: |
|
(++) Baud Rate |
|
(++) Word Length |
|
(++) Stop Bit |
|
(++) Parity: If the parity is enabled, then the MSB bit of the data written |
|
in the data register is transmitted but is changed by the parity bit. |
|
(++) Hardware flow control |
|
(++) Receiver/transmitter modes |
|
(++) Over Sampling Method |
|
(++) One-Bit Sampling Method |
|
(+) For the asynchronous mode, the following advanced features can be configured as well: |
|
(++) TX and/or RX pin level inversion |
|
(++) data logical level inversion |
|
(++) RX and TX pins swap |
|
(++) RX overrun detection disabling |
|
(++) DMA disabling on RX error |
|
(++) MSB first on communication line |
|
(++) auto Baud rate detection |
|
[..] |
|
The HAL_RS485Ex_Init() API follows the UART RS485 mode configuration |
|
procedures (details for the procedures are available in reference manual). |
|
|
|
@endverbatim |
|
|
|
Depending on the frame length defined by the M1 and M0 bits (7-bit, |
|
8-bit or 9-bit), the possible UART formats are listed in the |
|
following table. |
|
|
|
Table 1. UART frame format. |
|
+-----------------------------------------------------------------------+ |
|
| M1 bit | M0 bit | PCE bit | UART frame | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 0 | 0 | | SB | 8 bit data | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 1 | 0 | | SB | 9 bit data | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 1 | 0 | 0 | | SB | 7 bit data | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | |
|
+-----------------------------------------------------------------------+ |
|
|
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Initialize the RS485 Driver enable feature according to the specified |
|
* parameters in the UART_InitTypeDef and creates the associated handle. |
|
* @param huart UART handle. |
|
* @param Polarity Select the driver enable polarity. |
|
* This parameter can be one of the following values: |
|
* @arg @ref UART_DE_POLARITY_HIGH DE signal is active high |
|
* @arg @ref UART_DE_POLARITY_LOW DE signal is active low |
|
* @param AssertionTime Driver Enable assertion time: |
|
* 5-bit value defining the time between the activation of the DE (Driver Enable) |
|
* signal and the beginning of the start bit. It is expressed in sample time |
|
* units (1/8 or 1/16 bit time, depending on the oversampling rate) |
|
* @param DeassertionTime Driver Enable deassertion time: |
|
* 5-bit value defining the time between the end of the last stop bit, in a |
|
* transmitted message, and the de-activation of the DE (Driver Enable) signal. |
|
* It is expressed in sample time units (1/8 or 1/16 bit time, depending on the |
|
* oversampling rate). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_RS485Ex_Init(UART_HandleTypeDef *huart, uint32_t Polarity, uint32_t AssertionTime, |
|
uint32_t DeassertionTime) |
|
{ |
|
uint32_t temp; |
|
|
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
/* Check the Driver Enable UART instance */ |
|
assert_param(IS_UART_DRIVER_ENABLE_INSTANCE(huart->Instance)); |
|
|
|
/* Check the Driver Enable polarity */ |
|
assert_param(IS_UART_DE_POLARITY(Polarity)); |
|
|
|
/* Check the Driver Enable assertion time */ |
|
assert_param(IS_UART_ASSERTIONTIME(AssertionTime)); |
|
|
|
/* Check the Driver Enable deassertion time */ |
|
assert_param(IS_UART_DEASSERTIONTIME(DeassertionTime)); |
|
|
|
if (huart->gState == HAL_UART_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
huart->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
UART_InitCallbacksToDefault(huart); |
|
|
|
if (huart->MspInitCallback == NULL) |
|
{ |
|
huart->MspInitCallback = HAL_UART_MspInit; |
|
} |
|
|
|
/* Init the low level hardware */ |
|
huart->MspInitCallback(huart); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK, CORTEX */ |
|
HAL_UART_MspInit(huart); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the UART Communication parameters */ |
|
if (UART_SetConfig(huart) == HAL_ERROR) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) |
|
{ |
|
UART_AdvFeatureConfig(huart); |
|
} |
|
|
|
/* Enable the Driver Enable mode by setting the DEM bit in the CR3 register */ |
|
SET_BIT(huart->Instance->CR3, USART_CR3_DEM); |
|
|
|
/* Set the Driver Enable polarity */ |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_DEP, Polarity); |
|
|
|
/* Set the Driver Enable assertion and deassertion times */ |
|
temp = (AssertionTime << UART_CR1_DEAT_ADDRESS_LSB_POS); |
|
temp |= (DeassertionTime << UART_CR1_DEDT_ADDRESS_LSB_POS); |
|
MODIFY_REG(huart->Instance->CR1, (USART_CR1_DEDT | USART_CR1_DEAT), temp); |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ |
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup UARTEx_Exported_Functions_Group2 IO operation functions |
|
* @brief Extended functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### IO operation functions ##### |
|
=============================================================================== |
|
This subsection provides a set of Wakeup and FIFO mode related callback functions. |
|
|
|
(#) Wakeup from Stop mode Callback: |
|
(+) HAL_UARTEx_WakeupCallback() |
|
|
|
(#) TX/RX Fifos Callbacks: |
|
(+) HAL_UARTEx_RxFifoFullCallback() |
|
(+) HAL_UARTEx_TxFifoEmptyCallback() |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief UART wakeup from Stop mode callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UARTEx_WakeupCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UARTEx_WakeupCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief UART RX Fifo full callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UARTEx_RxFifoFullCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UARTEx_RxFifoFullCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief UART TX Fifo empty callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UARTEx_TxFifoEmptyCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UARTEx_TxFifoEmptyCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup UARTEx_Exported_Functions_Group3 Peripheral Control functions |
|
* @brief Extended Peripheral Control functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Peripheral Control functions ##### |
|
=============================================================================== |
|
[..] This section provides the following functions: |
|
(+) HAL_MultiProcessorEx_AddressLength_Set() API optionally sets the UART node address |
|
detection length to more than 4 bits for multiprocessor address mark wake up. |
|
(+) HAL_UARTEx_StopModeWakeUpSourceConfig() API defines the wake-up from stop mode |
|
trigger: address match, Start Bit detection or RXNE bit status. |
|
(+) HAL_UARTEx_EnableStopMode() API enables the UART to wake up the MCU from stop mode |
|
(+) HAL_UARTEx_DisableStopMode() API disables the above functionality |
|
(+) HAL_UARTEx_EnableFifoMode() API enables the FIFO mode |
|
(+) HAL_UARTEx_DisableFifoMode() API disables the FIFO mode |
|
(+) HAL_UARTEx_SetTxFifoThreshold() API sets the TX FIFO threshold |
|
(+) HAL_UARTEx_SetRxFifoThreshold() API sets the RX FIFO threshold |
|
|
|
[..] This subsection also provides a set of additional functions providing enhanced reception |
|
services to user. (For example, these functions allow application to handle use cases |
|
where number of data to be received is unknown). |
|
|
|
(#) Compared to standard reception services which only consider number of received |
|
data elements as reception completion criteria, these functions also consider additional events |
|
as triggers for updating reception status to caller : |
|
(+) Detection of inactivity period (RX line has not been active for a given period). |
|
(++) RX inactivity detected by IDLE event, i.e. RX line has been in idle state (normally high state) |
|
for 1 frame time, after last received byte. |
|
(++) RX inactivity detected by RTO, i.e. line has been in idle state |
|
for a programmable time, after last received byte. |
|
(+) Detection that a specific character has been received. |
|
|
|
(#) There are two mode of transfer: |
|
(+) Blocking mode: The reception is performed in polling mode, until either expected number of data is received, |
|
or till IDLE event occurs. Reception is handled only during function execution. |
|
When function exits, no data reception could occur. HAL status and number of actually received data elements, |
|
are returned by function after finishing transfer. |
|
(+) Non-Blocking mode: The reception is performed using Interrupts or DMA. |
|
These API's return the HAL status. |
|
The end of the data processing will be indicated through the |
|
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when using DMA mode. |
|
The HAL_UARTEx_RxEventCallback() user callback will be executed during Receive process |
|
The HAL_UART_ErrorCallback()user callback will be executed when a reception error is detected. |
|
|
|
(#) Blocking mode API: |
|
(+) HAL_UARTEx_ReceiveToIdle() |
|
|
|
(#) Non-Blocking mode API with Interrupt: |
|
(+) HAL_UARTEx_ReceiveToIdle_IT() |
|
|
|
(#) Non-Blocking mode API with DMA: |
|
(+) HAL_UARTEx_ReceiveToIdle_DMA() |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief By default in multiprocessor mode, when the wake up method is set |
|
* to address mark, the UART handles only 4-bit long addresses detection; |
|
* this API allows to enable longer addresses detection (6-, 7- or 8-bit |
|
* long). |
|
* @note Addresses detection lengths are: 6-bit address detection in 7-bit data mode, |
|
* 7-bit address detection in 8-bit data mode, 8-bit address detection in 9-bit data mode. |
|
* @param huart UART handle. |
|
* @param AddressLength This parameter can be one of the following values: |
|
* @arg @ref UART_ADDRESS_DETECT_4B 4-bit long address |
|
* @arg @ref UART_ADDRESS_DETECT_7B 6-, 7- or 8-bit long address |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_MultiProcessorEx_AddressLength_Set(UART_HandleTypeDef *huart, uint32_t AddressLength) |
|
{ |
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the address length parameter */ |
|
assert_param(IS_UART_ADDRESSLENGTH_DETECT(AddressLength)); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the address length */ |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, AddressLength); |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* TEACK and/or REACK to check before moving huart->gState to Ready */ |
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
/** |
|
* @brief Set Wakeup from Stop mode interrupt flag selection. |
|
* @note It is the application responsibility to enable the interrupt used as |
|
* usart_wkup interrupt source before entering low-power mode. |
|
* @param huart UART handle. |
|
* @param WakeUpSelection Address match, Start Bit detection or RXNE/RXFNE bit status. |
|
* This parameter can be one of the following values: |
|
* @arg @ref UART_WAKEUP_ON_ADDRESS |
|
* @arg @ref UART_WAKEUP_ON_STARTBIT |
|
* @arg @ref UART_WAKEUP_ON_READDATA_NONEMPTY |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_StopModeWakeUpSourceConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
uint32_t tickstart; |
|
|
|
/* check the wake-up from stop mode UART instance */ |
|
assert_param(IS_UART_WAKEUP_FROMSTOP_INSTANCE(huart->Instance)); |
|
/* check the wake-up selection parameter */ |
|
assert_param(IS_UART_WAKEUP_SELECTION(WakeUpSelection.WakeUpEvent)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Disable the Peripheral */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the wake-up selection scheme */ |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_WUS, WakeUpSelection.WakeUpEvent); |
|
|
|
if (WakeUpSelection.WakeUpEvent == UART_WAKEUP_ON_ADDRESS) |
|
{ |
|
UARTEx_Wakeup_AddressConfig(huart, WakeUpSelection); |
|
} |
|
|
|
/* Enable the Peripheral */ |
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* Init tickstart for timeout management */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait until REACK flag is set */ |
|
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) |
|
{ |
|
status = HAL_TIMEOUT; |
|
} |
|
else |
|
{ |
|
/* Initialize the UART State */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
} |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Enable UART Stop Mode. |
|
* @note The UART is able to wake up the MCU from Stop 1 mode as long as UART clock is HSI or LSE. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_EnableStopMode(UART_HandleTypeDef *huart) |
|
{ |
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
/* Set UESM bit */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_UESM); |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Disable UART Stop Mode. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_DisableStopMode(UART_HandleTypeDef *huart) |
|
{ |
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
/* Clear UESM bit */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_UESM); |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Enable the FIFO mode. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_EnableFifoMode(UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t tmpcr1; |
|
|
|
/* Check parameters */ |
|
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Save actual UART configuration */ |
|
tmpcr1 = READ_REG(huart->Instance->CR1); |
|
|
|
/* Disable UART */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Enable FIFO mode */ |
|
SET_BIT(tmpcr1, USART_CR1_FIFOEN); |
|
huart->FifoMode = UART_FIFOMODE_ENABLE; |
|
|
|
/* Restore UART configuration */ |
|
WRITE_REG(huart->Instance->CR1, tmpcr1); |
|
|
|
/* Determine the number of data to process during RX/TX ISR execution */ |
|
UARTEx_SetNbDataToProcess(huart); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Disable the FIFO mode. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_DisableFifoMode(UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t tmpcr1; |
|
|
|
/* Check parameters */ |
|
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Save actual UART configuration */ |
|
tmpcr1 = READ_REG(huart->Instance->CR1); |
|
|
|
/* Disable UART */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Enable FIFO mode */ |
|
CLEAR_BIT(tmpcr1, USART_CR1_FIFOEN); |
|
huart->FifoMode = UART_FIFOMODE_DISABLE; |
|
|
|
/* Restore UART configuration */ |
|
WRITE_REG(huart->Instance->CR1, tmpcr1); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Set the TXFIFO threshold. |
|
* @param huart UART handle. |
|
* @param Threshold TX FIFO threshold value |
|
* This parameter can be one of the following values: |
|
* @arg @ref UART_TXFIFO_THRESHOLD_1_8 |
|
* @arg @ref UART_TXFIFO_THRESHOLD_1_4 |
|
* @arg @ref UART_TXFIFO_THRESHOLD_1_2 |
|
* @arg @ref UART_TXFIFO_THRESHOLD_3_4 |
|
* @arg @ref UART_TXFIFO_THRESHOLD_7_8 |
|
* @arg @ref UART_TXFIFO_THRESHOLD_8_8 |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_SetTxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold) |
|
{ |
|
uint32_t tmpcr1; |
|
|
|
/* Check parameters */ |
|
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); |
|
assert_param(IS_UART_TXFIFO_THRESHOLD(Threshold)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Save actual UART configuration */ |
|
tmpcr1 = READ_REG(huart->Instance->CR1); |
|
|
|
/* Disable UART */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Update TX threshold configuration */ |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_TXFTCFG, Threshold); |
|
|
|
/* Determine the number of data to process during RX/TX ISR execution */ |
|
UARTEx_SetNbDataToProcess(huart); |
|
|
|
/* Restore UART configuration */ |
|
WRITE_REG(huart->Instance->CR1, tmpcr1); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Set the RXFIFO threshold. |
|
* @param huart UART handle. |
|
* @param Threshold RX FIFO threshold value |
|
* This parameter can be one of the following values: |
|
* @arg @ref UART_RXFIFO_THRESHOLD_1_8 |
|
* @arg @ref UART_RXFIFO_THRESHOLD_1_4 |
|
* @arg @ref UART_RXFIFO_THRESHOLD_1_2 |
|
* @arg @ref UART_RXFIFO_THRESHOLD_3_4 |
|
* @arg @ref UART_RXFIFO_THRESHOLD_7_8 |
|
* @arg @ref UART_RXFIFO_THRESHOLD_8_8 |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_SetRxFifoThreshold(UART_HandleTypeDef *huart, uint32_t Threshold) |
|
{ |
|
uint32_t tmpcr1; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_UART_FIFO_INSTANCE(huart->Instance)); |
|
assert_param(IS_UART_RXFIFO_THRESHOLD(Threshold)); |
|
|
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Save actual UART configuration */ |
|
tmpcr1 = READ_REG(huart->Instance->CR1); |
|
|
|
/* Disable UART */ |
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Update RX threshold configuration */ |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_RXFTCFG, Threshold); |
|
|
|
/* Determine the number of data to process during RX/TX ISR execution */ |
|
UARTEx_SetNbDataToProcess(huart); |
|
|
|
/* Restore UART configuration */ |
|
WRITE_REG(huart->Instance->CR1, tmpcr1); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Receive an amount of data in blocking mode till either the expected number of data is received or an IDLE event occurs. |
|
* @note HAL_OK is returned if reception is completed (expected number of data has been received) |
|
* or if reception is stopped after IDLE event (less than the expected number of data has been received) |
|
* In this case, RxLen output parameter indicates number of data available in reception buffer. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
|
* of uint16_t available through pData. |
|
* @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO |
|
* is not empty. Read operations from the RDR register are performed when |
|
* RXFNE flag is set. From hardware perspective, RXFNE flag and |
|
* RXNE are mapped on the same bit-field. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) |
|
* (as received data will be handled using uint16_t pointer cast). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
|
* @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
|
* @param RxLen Number of data elements finally received (could be lower than Size, in case reception ends on IDLE event) |
|
* @param Timeout Timeout duration expressed in ms (covers the whole reception sequence). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint16_t *RxLen, uint32_t Timeout) |
|
{ |
|
uint8_t *pdata8bits; |
|
uint16_t *pdata16bits; |
|
uint16_t uhMask; |
|
uint32_t tickstart; |
|
|
|
/* Check that a Rx process is not already ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a uint16_t frontier, as data to be received from RDR will be |
|
handled through a uint16_t cast. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->RxState = HAL_UART_STATE_BUSY_RX; |
|
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
/* Init tickstart for timeout management */ |
|
tickstart = HAL_GetTick(); |
|
|
|
huart->RxXferSize = Size; |
|
huart->RxXferCount = Size; |
|
|
|
/* Computation of UART mask to apply to RDR register */ |
|
UART_MASK_COMPUTATION(huart); |
|
uhMask = huart->Mask; |
|
|
|
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
pdata8bits = NULL; |
|
pdata16bits = (uint16_t *) pData; |
|
} |
|
else |
|
{ |
|
pdata8bits = pData; |
|
pdata16bits = NULL; |
|
} |
|
|
|
/* Initialize output number of received elements */ |
|
*RxLen = 0U; |
|
|
|
/* as long as data have to be received */ |
|
while (huart->RxXferCount > 0U) |
|
{ |
|
/* Check if IDLE flag is set */ |
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE)) |
|
{ |
|
/* Clear IDLE flag in ISR */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
|
|
/* If Set, but no data ever received, clear flag without exiting loop */ |
|
/* If Set, and data has already been received, this means Idle Event is valid : End reception */ |
|
if (*RxLen > 0U) |
|
{ |
|
huart->RxEventType = HAL_UART_RXEVENT_IDLE; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
} |
|
|
|
/* Check if RXNE flag is set */ |
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE)) |
|
{ |
|
if (pdata8bits == NULL) |
|
{ |
|
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask); |
|
pdata16bits++; |
|
} |
|
else |
|
{ |
|
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); |
|
pdata8bits++; |
|
} |
|
/* Increment number of received elements */ |
|
*RxLen += 1U; |
|
huart->RxXferCount--; |
|
} |
|
|
|
/* Check for the Timeout */ |
|
if (Timeout != HAL_MAX_DELAY) |
|
{ |
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) |
|
{ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
/* Set number of received elements in output parameter : RxLen */ |
|
*RxLen = huart->RxXferSize - huart->RxXferCount; |
|
/* At end of Rx process, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Receive an amount of data in interrupt mode till either the expected number of data is received or an IDLE event occurs. |
|
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks |
|
* to UART interrupts raised by RXNE and IDLE events. Callback is called at end of reception indicating |
|
* number of received data elements. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
|
* of uint16_t available through pData. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) |
|
* (as received data will be handled using uint16_t pointer cast). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
|
* @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
{ |
|
HAL_StatusTypeDef status; |
|
|
|
/* Check that a Rx process is not already ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a uint16_t frontier, as data to be received from RDR will be |
|
handled through a uint16_t cast. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
/* Set Reception type to reception till IDLE Event*/ |
|
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
status = UART_Start_Receive_IT(huart, pData, Size); |
|
|
|
/* Check Rx process has been successfully started */ |
|
if (status == HAL_OK) |
|
{ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
} |
|
else |
|
{ |
|
/* In case of errors already pending when reception is started, |
|
Interrupts may have already been raised and lead to reception abortion. |
|
(Overrun error for instance). |
|
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ |
|
status = HAL_ERROR; |
|
} |
|
} |
|
|
|
return status; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Receive an amount of data in DMA mode till either the expected number of data is received or an IDLE event occurs. |
|
* @note Reception is initiated by this function call. Further progress of reception is achieved thanks |
|
* to DMA services, transferring automatically received data elements in user reception buffer and |
|
* calling registered callbacks at half/end of reception. UART IDLE events are also used to consider |
|
* reception phase as ended. In all cases, callback execution will indicate number of received data elements. |
|
* @note When the UART parity is enabled (PCE = 1), the received data contain |
|
* the parity bit (MSB position). |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the received data is handled as a set of uint16_t. In this case, Size must indicate the number |
|
* of uint16_t available through pData. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer for storing data to be received, should be aligned on a half word frontier (16 bits) |
|
* (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (uint8_t or uint16_t data elements). |
|
* @param Size Amount of data elements (uint8_t or uint16_t) to be received. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UARTEx_ReceiveToIdle_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
{ |
|
HAL_StatusTypeDef status; |
|
|
|
/* Check that a Rx process is not already ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a uint16_t frontier, as data copy from RDR will be |
|
handled by DMA from a uint16_t frontier. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
/* Set Reception type to reception till IDLE Event*/ |
|
huart->ReceptionType = HAL_UART_RECEPTION_TOIDLE; |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
status = UART_Start_Receive_DMA(huart, pData, Size); |
|
|
|
/* Check Rx process has been successfully started */ |
|
if (status == HAL_OK) |
|
{ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
} |
|
else |
|
{ |
|
/* In case of errors already pending when reception is started, |
|
Interrupts may have already been raised and lead to reception abortion. |
|
(Overrun error for instance). |
|
In such case Reception Type has been reset to HAL_UART_RECEPTION_STANDARD. */ |
|
status = HAL_ERROR; |
|
} |
|
} |
|
|
|
return status; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Provide Rx Event type that has lead to RxEvent callback execution. |
|
* @note When HAL_UARTEx_ReceiveToIdle_IT() or HAL_UARTEx_ReceiveToIdle_DMA() API are called, progress |
|
* of reception process is provided to application through calls of Rx Event callback (either default one |
|
* HAL_UARTEx_RxEventCallback() or user registered one). As several types of events could occur (IDLE event, |
|
* Half Transfer, or Transfer Complete), this function allows to retrieve the Rx Event type that has lead |
|
* to Rx Event callback execution. |
|
* @note This function is expected to be called within the user implementation of Rx Event Callback, |
|
* in order to provide the accurate value : |
|
* In Interrupt Mode : |
|
* - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received) |
|
* - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of |
|
* received data is lower than expected one) |
|
* In DMA Mode : |
|
* - HAL_UART_RXEVENT_TC : when Reception has been completed (expected nb of data has been received) |
|
* - HAL_UART_RXEVENT_HT : when half of expected nb of data has been received |
|
* - HAL_UART_RXEVENT_IDLE : when Idle event occurred prior reception has been completed (nb of |
|
* received data is lower than expected one). |
|
* In DMA mode, RxEvent callback could be called several times; |
|
* When DMA is configured in Normal Mode, HT event does not stop Reception process; |
|
* When DMA is configured in Circular Mode, HT, TC or IDLE events don't stop Reception process; |
|
* @param huart UART handle. |
|
* @retval Rx Event Type (return vale will be a value of @ref UART_RxEvent_Type_Values) |
|
*/ |
|
HAL_UART_RxEventTypeTypeDef HAL_UARTEx_GetRxEventType(UART_HandleTypeDef *huart) |
|
{ |
|
/* Return Rx Event type value, as stored in UART handle */ |
|
return(huart->RxEventType); |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @addtogroup UARTEx_Private_Functions |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Initialize the UART wake-up from stop mode parameters when triggered by address detection. |
|
* @param huart UART handle. |
|
* @param WakeUpSelection UART wake up from stop mode parameters. |
|
* @retval None |
|
*/ |
|
static void UARTEx_Wakeup_AddressConfig(UART_HandleTypeDef *huart, UART_WakeUpTypeDef WakeUpSelection) |
|
{ |
|
assert_param(IS_UART_ADDRESSLENGTH_DETECT(WakeUpSelection.AddressLength)); |
|
|
|
/* Set the USART address length */ |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADDM7, WakeUpSelection.AddressLength); |
|
|
|
/* Set the USART address node */ |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)WakeUpSelection.Address << UART_CR2_ADDRESS_LSB_POS)); |
|
} |
|
|
|
/** |
|
* @brief Calculate the number of data to process in RX/TX ISR. |
|
* @note The RX FIFO depth and the TX FIFO depth is extracted from |
|
* the UART configuration registers. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UARTEx_SetNbDataToProcess(UART_HandleTypeDef *huart) |
|
{ |
|
uint8_t rx_fifo_depth; |
|
uint8_t tx_fifo_depth; |
|
uint8_t rx_fifo_threshold; |
|
uint8_t tx_fifo_threshold; |
|
static const uint8_t numerator[] = {1U, 1U, 1U, 3U, 7U, 1U, 0U, 0U}; |
|
static const uint8_t denominator[] = {8U, 4U, 2U, 4U, 8U, 1U, 1U, 1U}; |
|
|
|
if (huart->FifoMode == UART_FIFOMODE_DISABLE) |
|
{ |
|
huart->NbTxDataToProcess = 1U; |
|
huart->NbRxDataToProcess = 1U; |
|
} |
|
else |
|
{ |
|
rx_fifo_depth = RX_FIFO_DEPTH; |
|
tx_fifo_depth = TX_FIFO_DEPTH; |
|
rx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_RXFTCFG) >> USART_CR3_RXFTCFG_Pos); |
|
tx_fifo_threshold = (uint8_t)(READ_BIT(huart->Instance->CR3, USART_CR3_TXFTCFG) >> USART_CR3_TXFTCFG_Pos); |
|
huart->NbTxDataToProcess = ((uint16_t)tx_fifo_depth * numerator[tx_fifo_threshold]) / |
|
(uint16_t)denominator[tx_fifo_threshold]; |
|
huart->NbRxDataToProcess = ((uint16_t)rx_fifo_depth * numerator[rx_fifo_threshold]) / |
|
(uint16_t)denominator[rx_fifo_threshold]; |
|
} |
|
} |
|
/** |
|
* @} |
|
*/ |
|
|
|
#endif /* HAL_UART_MODULE_ENABLED */ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
|