You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4762 lines
165 KiB
4762 lines
165 KiB
/** |
|
****************************************************************************** |
|
* @file stm32wlxx_hal_uart.c |
|
* @author MCD Application Team |
|
* @brief UART HAL module driver. |
|
* This file provides firmware functions to manage the following |
|
* functionalities of the Universal Asynchronous Receiver Transmitter Peripheral (UART). |
|
* + Initialization and de-initialization functions |
|
* + IO operation functions |
|
* + Peripheral Control functions |
|
* |
|
* |
|
****************************************************************************** |
|
* @attention |
|
* |
|
* Copyright (c) 2020 STMicroelectronics. |
|
* All rights reserved. |
|
* |
|
* This software is licensed under terms that can be found in the LICENSE file |
|
* in the root directory of this software component. |
|
* If no LICENSE file comes with this software, it is provided AS-IS. |
|
* |
|
****************************************************************************** |
|
@verbatim |
|
=============================================================================== |
|
##### How to use this driver ##### |
|
=============================================================================== |
|
[..] |
|
The UART HAL driver can be used as follows: |
|
|
|
(#) Declare a UART_HandleTypeDef handle structure (eg. UART_HandleTypeDef huart). |
|
(#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API: |
|
(++) Enable the USARTx interface clock. |
|
(++) UART pins configuration: |
|
(+++) Enable the clock for the UART GPIOs. |
|
(+++) Configure these UART pins as alternate function pull-up. |
|
(++) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT() |
|
and HAL_UART_Receive_IT() APIs): |
|
(+++) Configure the USARTx interrupt priority. |
|
(+++) Enable the NVIC USART IRQ handle. |
|
(++) UART interrupts handling: |
|
-@@- The specific UART interrupts (Transmission complete interrupt, |
|
RXNE interrupt, RX/TX FIFOs related interrupts and Error Interrupts) |
|
are managed using the macros __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() |
|
inside the transmit and receive processes. |
|
(++) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA() |
|
and HAL_UART_Receive_DMA() APIs): |
|
(+++) Declare a DMA handle structure for the Tx/Rx channel. |
|
(+++) Enable the DMAx interface clock. |
|
(+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. |
|
(+++) Configure the DMA Tx/Rx channel. |
|
(+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle. |
|
(+++) Configure the priority and enable the NVIC for the transfer complete |
|
interrupt on the DMA Tx/Rx channel. |
|
|
|
(#) Program the Baud Rate, Word Length, Stop Bit, Parity, Prescaler value , Hardware |
|
flow control and Mode (Receiver/Transmitter) in the huart handle Init structure. |
|
|
|
(#) If required, program UART advanced features (TX/RX pins swap, auto Baud rate detection,...) |
|
in the huart handle AdvancedInit structure. |
|
|
|
(#) For the UART asynchronous mode, initialize the UART registers by calling |
|
the HAL_UART_Init() API. |
|
|
|
(#) For the UART Half duplex mode, initialize the UART registers by calling |
|
the HAL_HalfDuplex_Init() API. |
|
|
|
(#) For the UART LIN (Local Interconnection Network) mode, initialize the UART registers |
|
by calling the HAL_LIN_Init() API. |
|
|
|
(#) For the UART Multiprocessor mode, initialize the UART registers |
|
by calling the HAL_MultiProcessor_Init() API. |
|
|
|
(#) For the UART RS485 Driver Enabled mode, initialize the UART registers |
|
by calling the HAL_RS485Ex_Init() API. |
|
|
|
[..] |
|
(@) These API's (HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init(), HAL_MultiProcessor_Init(), |
|
also configure the low level Hardware GPIO, CLOCK, CORTEX...etc) by |
|
calling the customized HAL_UART_MspInit() API. |
|
|
|
##### Callback registration ##### |
|
================================== |
|
|
|
[..] |
|
The compilation define USE_HAL_UART_REGISTER_CALLBACKS when set to 1 |
|
allows the user to configure dynamically the driver callbacks. |
|
|
|
[..] |
|
Use Function HAL_UART_RegisterCallback() to register a user callback. |
|
Function HAL_UART_RegisterCallback() allows to register following callbacks: |
|
(+) TxHalfCpltCallback : Tx Half Complete Callback. |
|
(+) TxCpltCallback : Tx Complete Callback. |
|
(+) RxHalfCpltCallback : Rx Half Complete Callback. |
|
(+) RxCpltCallback : Rx Complete Callback. |
|
(+) ErrorCallback : Error Callback. |
|
(+) AbortCpltCallback : Abort Complete Callback. |
|
(+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. |
|
(+) AbortReceiveCpltCallback : Abort Receive Complete Callback. |
|
(+) WakeupCallback : Wakeup Callback. |
|
(+) RxFifoFullCallback : Rx Fifo Full Callback. |
|
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback. |
|
(+) MspInitCallback : UART MspInit. |
|
(+) MspDeInitCallback : UART MspDeInit. |
|
This function takes as parameters the HAL peripheral handle, the Callback ID |
|
and a pointer to the user callback function. |
|
|
|
[..] |
|
Use function HAL_UART_UnRegisterCallback() to reset a callback to the default |
|
weak (surcharged) function. |
|
HAL_UART_UnRegisterCallback() takes as parameters the HAL peripheral handle, |
|
and the Callback ID. |
|
This function allows to reset following callbacks: |
|
(+) TxHalfCpltCallback : Tx Half Complete Callback. |
|
(+) TxCpltCallback : Tx Complete Callback. |
|
(+) RxHalfCpltCallback : Rx Half Complete Callback. |
|
(+) RxCpltCallback : Rx Complete Callback. |
|
(+) ErrorCallback : Error Callback. |
|
(+) AbortCpltCallback : Abort Complete Callback. |
|
(+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. |
|
(+) AbortReceiveCpltCallback : Abort Receive Complete Callback. |
|
(+) WakeupCallback : Wakeup Callback. |
|
(+) RxFifoFullCallback : Rx Fifo Full Callback. |
|
(+) TxFifoEmptyCallback : Tx Fifo Empty Callback. |
|
(+) MspInitCallback : UART MspInit. |
|
(+) MspDeInitCallback : UART MspDeInit. |
|
|
|
[..] |
|
For specific callback RxEventCallback, use dedicated registration/reset functions: |
|
respectively HAL_UART_RegisterRxEventCallback() , HAL_UART_UnRegisterRxEventCallback(). |
|
|
|
[..] |
|
By default, after the HAL_UART_Init() and when the state is HAL_UART_STATE_RESET |
|
all callbacks are set to the corresponding weak (surcharged) functions: |
|
examples HAL_UART_TxCpltCallback(), HAL_UART_RxHalfCpltCallback(). |
|
Exception done for MspInit and MspDeInit functions that are respectively |
|
reset to the legacy weak (surcharged) functions in the HAL_UART_Init() |
|
and HAL_UART_DeInit() only when these callbacks are null (not registered beforehand). |
|
If not, MspInit or MspDeInit are not null, the HAL_UART_Init() and HAL_UART_DeInit() |
|
keep and use the user MspInit/MspDeInit callbacks (registered beforehand). |
|
|
|
[..] |
|
Callbacks can be registered/unregistered in HAL_UART_STATE_READY state only. |
|
Exception done MspInit/MspDeInit that can be registered/unregistered |
|
in HAL_UART_STATE_READY or HAL_UART_STATE_RESET state, thus registered (user) |
|
MspInit/DeInit callbacks can be used during the Init/DeInit. |
|
In that case first register the MspInit/MspDeInit user callbacks |
|
using HAL_UART_RegisterCallback() before calling HAL_UART_DeInit() |
|
or HAL_UART_Init() function. |
|
|
|
[..] |
|
When The compilation define USE_HAL_UART_REGISTER_CALLBACKS is set to 0 or |
|
not defined, the callback registration feature is not available |
|
and weak (surcharged) callbacks are used. |
|
|
|
|
|
@endverbatim |
|
****************************************************************************** |
|
*/ |
|
|
|
/* Includes ------------------------------------------------------------------*/ |
|
#include "stm32wlxx_hal.h" |
|
|
|
/** @addtogroup STM32WLxx_HAL_Driver |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup UART UART |
|
* @brief HAL UART module driver |
|
* @{ |
|
*/ |
|
|
|
#ifdef HAL_UART_MODULE_ENABLED |
|
|
|
/* Private typedef -----------------------------------------------------------*/ |
|
/* Private define ------------------------------------------------------------*/ |
|
/** @defgroup UART_Private_Constants UART Private Constants |
|
* @{ |
|
*/ |
|
#define USART_CR1_FIELDS ((uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | \ |
|
USART_CR1_OVER8 | USART_CR1_FIFOEN)) /*!< UART or USART CR1 fields of parameters set by UART_SetConfig API */ |
|
|
|
#define USART_CR3_FIELDS ((uint32_t)(USART_CR3_RTSE | USART_CR3_CTSE | USART_CR3_ONEBIT | USART_CR3_TXFTCFG | \ |
|
USART_CR3_RXFTCFG)) /*!< UART or USART CR3 fields of parameters set by UART_SetConfig API */ |
|
|
|
#define LPUART_BRR_MIN 0x00000300U /* LPUART BRR minimum authorized value */ |
|
#define LPUART_BRR_MAX 0x000FFFFFU /* LPUART BRR maximum authorized value */ |
|
|
|
#define UART_BRR_MIN 0x10U /* UART BRR minimum authorized value */ |
|
#define UART_BRR_MAX 0x0000FFFFU /* UART BRR maximum authorized value */ |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Private macros ------------------------------------------------------------*/ |
|
/* Private function prototypes -----------------------------------------------*/ |
|
/** @addtogroup UART_Private_Functions |
|
* @{ |
|
*/ |
|
static void UART_EndTxTransfer(UART_HandleTypeDef *huart); |
|
static void UART_EndRxTransfer(UART_HandleTypeDef *huart); |
|
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma); |
|
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma); |
|
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma); |
|
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma); |
|
static void UART_DMAError(DMA_HandleTypeDef *hdma); |
|
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma); |
|
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma); |
|
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma); |
|
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); |
|
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); |
|
static void UART_TxISR_8BIT(UART_HandleTypeDef *huart); |
|
static void UART_TxISR_16BIT(UART_HandleTypeDef *huart); |
|
static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart); |
|
static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart); |
|
static void UART_EndTransmit_IT(UART_HandleTypeDef *huart); |
|
static void UART_RxISR_8BIT(UART_HandleTypeDef *huart); |
|
static void UART_RxISR_16BIT(UART_HandleTypeDef *huart); |
|
static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart); |
|
static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart); |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Private variables ---------------------------------------------------------*/ |
|
/** @addtogroup UART_Private_variables |
|
* @{ |
|
*/ |
|
const uint16_t UARTPrescTable[12] = {1U, 2U, 4U, 6U, 8U, 10U, 12U, 16U, 32U, 64U, 128U, 256U}; |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Exported Constants --------------------------------------------------------*/ |
|
/* Exported functions --------------------------------------------------------*/ |
|
|
|
/** @defgroup UART_Exported_Functions UART Exported Functions |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions |
|
* @brief Initialization and Configuration functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Initialization and Configuration functions ##### |
|
=============================================================================== |
|
[..] |
|
This subsection provides a set of functions allowing to initialize the USARTx or the UARTy |
|
in asynchronous mode. |
|
(+) For the asynchronous mode the parameters below can be configured: |
|
(++) Baud Rate |
|
(++) Word Length |
|
(++) Stop Bit |
|
(++) Parity: If the parity is enabled, then the MSB bit of the data written |
|
in the data register is transmitted but is changed by the parity bit. |
|
(++) Hardware flow control |
|
(++) Receiver/transmitter modes |
|
(++) Over Sampling Method |
|
(++) One-Bit Sampling Method |
|
(+) For the asynchronous mode, the following advanced features can be configured as well: |
|
(++) TX and/or RX pin level inversion |
|
(++) data logical level inversion |
|
(++) RX and TX pins swap |
|
(++) RX overrun detection disabling |
|
(++) DMA disabling on RX error |
|
(++) MSB first on communication line |
|
(++) auto Baud rate detection |
|
[..] |
|
The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init()and HAL_MultiProcessor_Init()API |
|
follow respectively the UART asynchronous, UART Half duplex, UART LIN mode |
|
and UART multiprocessor mode configuration procedures (details for the procedures |
|
are available in reference manual). |
|
|
|
@endverbatim |
|
|
|
Depending on the frame length defined by the M1 and M0 bits (7-bit, |
|
8-bit or 9-bit), the possible UART formats are listed in the |
|
following table. |
|
|
|
Table 1. UART frame format. |
|
+-----------------------------------------------------------------------+ |
|
| M1 bit | M0 bit | PCE bit | UART frame | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 0 | 0 | | SB | 8 bit data | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 0 | 1 | | SB | 7 bit data | PB | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 1 | 0 | | SB | 9 bit data | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 0 | 1 | 1 | | SB | 8 bit data | PB | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 1 | 0 | 0 | | SB | 7 bit data | STB | | |
|
|---------|---------|-----------|---------------------------------------| |
|
| 1 | 0 | 1 | | SB | 6 bit data | PB | STB | | |
|
+-----------------------------------------------------------------------+ |
|
|
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Initialize the UART mode according to the specified |
|
* parameters in the UART_InitTypeDef and initialize the associated handle. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart) |
|
{ |
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->Init.HwFlowCtl != UART_HWCONTROL_NONE) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance)); |
|
} |
|
else |
|
{ |
|
/* Check the parameters */ |
|
assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance))); |
|
} |
|
|
|
if (huart->gState == HAL_UART_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
huart->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
UART_InitCallbacksToDefault(huart); |
|
|
|
if (huart->MspInitCallback == NULL) |
|
{ |
|
huart->MspInitCallback = HAL_UART_MspInit; |
|
} |
|
|
|
/* Init the low level hardware */ |
|
huart->MspInitCallback(huart); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK */ |
|
HAL_UART_MspInit(huart); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the UART Communication parameters */ |
|
if (UART_SetConfig(huart) == HAL_ERROR) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) |
|
{ |
|
UART_AdvFeatureConfig(huart); |
|
} |
|
|
|
/* In asynchronous mode, the following bits must be kept cleared: |
|
- LINEN and CLKEN bits in the USART_CR2 register, |
|
- SCEN, HDSEL and IREN bits in the USART_CR3 register.*/ |
|
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); |
|
|
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ |
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
/** |
|
* @brief Initialize the half-duplex mode according to the specified |
|
* parameters in the UART_InitTypeDef and creates the associated handle. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart) |
|
{ |
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check UART instance */ |
|
assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance)); |
|
|
|
if (huart->gState == HAL_UART_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
huart->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
UART_InitCallbacksToDefault(huart); |
|
|
|
if (huart->MspInitCallback == NULL) |
|
{ |
|
huart->MspInitCallback = HAL_UART_MspInit; |
|
} |
|
|
|
/* Init the low level hardware */ |
|
huart->MspInitCallback(huart); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK */ |
|
HAL_UART_MspInit(huart); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the UART Communication parameters */ |
|
if (UART_SetConfig(huart) == HAL_ERROR) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) |
|
{ |
|
UART_AdvFeatureConfig(huart); |
|
} |
|
|
|
/* In half-duplex mode, the following bits must be kept cleared: |
|
- LINEN and CLKEN bits in the USART_CR2 register, |
|
- SCEN and IREN bits in the USART_CR3 register.*/ |
|
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN)); |
|
|
|
/* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */ |
|
SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL); |
|
|
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ |
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
|
|
/** |
|
* @brief Initialize the LIN mode according to the specified |
|
* parameters in the UART_InitTypeDef and creates the associated handle. |
|
* @param huart UART handle. |
|
* @param BreakDetectLength Specifies the LIN break detection length. |
|
* This parameter can be one of the following values: |
|
* @arg @ref UART_LINBREAKDETECTLENGTH_10B 10-bit break detection |
|
* @arg @ref UART_LINBREAKDETECTLENGTH_11B 11-bit break detection |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength) |
|
{ |
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the LIN UART instance */ |
|
assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); |
|
/* Check the Break detection length parameter */ |
|
assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength)); |
|
|
|
/* LIN mode limited to 16-bit oversampling only */ |
|
if (huart->Init.OverSampling == UART_OVERSAMPLING_8) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
/* LIN mode limited to 8-bit data length */ |
|
if (huart->Init.WordLength != UART_WORDLENGTH_8B) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->gState == HAL_UART_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
huart->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
UART_InitCallbacksToDefault(huart); |
|
|
|
if (huart->MspInitCallback == NULL) |
|
{ |
|
huart->MspInitCallback = HAL_UART_MspInit; |
|
} |
|
|
|
/* Init the low level hardware */ |
|
huart->MspInitCallback(huart); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK */ |
|
HAL_UART_MspInit(huart); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the UART Communication parameters */ |
|
if (UART_SetConfig(huart) == HAL_ERROR) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) |
|
{ |
|
UART_AdvFeatureConfig(huart); |
|
} |
|
|
|
/* In LIN mode, the following bits must be kept cleared: |
|
- LINEN and CLKEN bits in the USART_CR2 register, |
|
- SCEN and IREN bits in the USART_CR3 register.*/ |
|
CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN); |
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN)); |
|
|
|
/* Enable the LIN mode by setting the LINEN bit in the CR2 register */ |
|
SET_BIT(huart->Instance->CR2, USART_CR2_LINEN); |
|
|
|
/* Set the USART LIN Break detection length. */ |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength); |
|
|
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ |
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
|
|
/** |
|
* @brief Initialize the multiprocessor mode according to the specified |
|
* parameters in the UART_InitTypeDef and initialize the associated handle. |
|
* @param huart UART handle. |
|
* @param Address UART node address (4-, 6-, 7- or 8-bit long). |
|
* @param WakeUpMethod Specifies the UART wakeup method. |
|
* This parameter can be one of the following values: |
|
* @arg @ref UART_WAKEUPMETHOD_IDLELINE WakeUp by an idle line detection |
|
* @arg @ref UART_WAKEUPMETHOD_ADDRESSMARK WakeUp by an address mark |
|
* @note If the user resorts to idle line detection wake up, the Address parameter |
|
* is useless and ignored by the initialization function. |
|
* @note If the user resorts to address mark wake up, the address length detection |
|
* is configured by default to 4 bits only. For the UART to be able to |
|
* manage 6-, 7- or 8-bit long addresses detection, the API |
|
* HAL_MultiProcessorEx_AddressLength_Set() must be called after |
|
* HAL_MultiProcessor_Init(). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod) |
|
{ |
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the wake up method parameter */ |
|
assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod)); |
|
|
|
if (huart->gState == HAL_UART_STATE_RESET) |
|
{ |
|
/* Allocate lock resource and initialize it */ |
|
huart->Lock = HAL_UNLOCKED; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
UART_InitCallbacksToDefault(huart); |
|
|
|
if (huart->MspInitCallback == NULL) |
|
{ |
|
huart->MspInitCallback = HAL_UART_MspInit; |
|
} |
|
|
|
/* Init the low level hardware */ |
|
huart->MspInitCallback(huart); |
|
#else |
|
/* Init the low level hardware : GPIO, CLOCK */ |
|
HAL_UART_MspInit(huart); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
__HAL_UART_DISABLE(huart); |
|
|
|
/* Set the UART Communication parameters */ |
|
if (UART_SetConfig(huart) == HAL_ERROR) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->AdvancedInit.AdvFeatureInit != UART_ADVFEATURE_NO_INIT) |
|
{ |
|
UART_AdvFeatureConfig(huart); |
|
} |
|
|
|
/* In multiprocessor mode, the following bits must be kept cleared: |
|
- LINEN and CLKEN bits in the USART_CR2 register, |
|
- SCEN, HDSEL and IREN bits in the USART_CR3 register. */ |
|
CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN)); |
|
CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN)); |
|
|
|
if (WakeUpMethod == UART_WAKEUPMETHOD_ADDRESSMARK) |
|
{ |
|
/* If address mark wake up method is chosen, set the USART address node */ |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, ((uint32_t)Address << UART_CR2_ADDRESS_LSB_POS)); |
|
} |
|
|
|
/* Set the wake up method by setting the WAKE bit in the CR1 register */ |
|
MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod); |
|
|
|
__HAL_UART_ENABLE(huart); |
|
|
|
/* TEACK and/or REACK to check before moving huart->gState and huart->RxState to Ready */ |
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
|
|
/** |
|
* @brief DeInitialize the UART peripheral. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart) |
|
{ |
|
/* Check the UART handle allocation */ |
|
if (huart == NULL) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Check the parameters */ |
|
assert_param((IS_UART_INSTANCE(huart->Instance)) || (IS_LPUART_INSTANCE(huart->Instance))); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
__HAL_UART_DISABLE(huart); |
|
|
|
huart->Instance->CR1 = 0x0U; |
|
huart->Instance->CR2 = 0x0U; |
|
huart->Instance->CR3 = 0x0U; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
if (huart->MspDeInitCallback == NULL) |
|
{ |
|
huart->MspDeInitCallback = HAL_UART_MspDeInit; |
|
} |
|
/* DeInit the low level hardware */ |
|
huart->MspDeInitCallback(huart); |
|
#else |
|
/* DeInit the low level hardware */ |
|
HAL_UART_MspDeInit(huart); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->gState = HAL_UART_STATE_RESET; |
|
huart->RxState = HAL_UART_STATE_RESET; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initialize the UART MSP. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_MspInit can be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief DeInitialize the UART MSP. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_MspDeInit can be implemented in the user file |
|
*/ |
|
} |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/** |
|
* @brief Register a User UART Callback |
|
* To be used instead of the weak predefined callback |
|
* @note The HAL_UART_RegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), |
|
* HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to register |
|
* callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID |
|
* @param huart uart handle |
|
* @param CallbackID ID of the callback to be registered |
|
* This parameter can be one of the following values: |
|
* @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID |
|
* @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID |
|
* @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID |
|
* @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID |
|
* @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID |
|
* @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID |
|
* @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID |
|
* @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID |
|
* @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID |
|
* @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID |
|
* @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID |
|
* @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID |
|
* @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID |
|
* @param pCallback pointer to the Callback function |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_RegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID, |
|
pUART_CallbackTypeDef pCallback) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
if (pCallback == NULL) |
|
{ |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
return HAL_ERROR; |
|
} |
|
|
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_UART_TX_HALFCOMPLETE_CB_ID : |
|
huart->TxHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_TX_COMPLETE_CB_ID : |
|
huart->TxCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_RX_HALFCOMPLETE_CB_ID : |
|
huart->RxHalfCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_RX_COMPLETE_CB_ID : |
|
huart->RxCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_ERROR_CB_ID : |
|
huart->ErrorCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_ABORT_COMPLETE_CB_ID : |
|
huart->AbortCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : |
|
huart->AbortTransmitCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : |
|
huart->AbortReceiveCpltCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_WAKEUP_CB_ID : |
|
huart->WakeupCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_RX_FIFO_FULL_CB_ID : |
|
huart->RxFifoFullCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_TX_FIFO_EMPTY_CB_ID : |
|
huart->TxFifoEmptyCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_MSPINIT_CB_ID : |
|
huart->MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_MSPDEINIT_CB_ID : |
|
huart->MspDeInitCallback = pCallback; |
|
break; |
|
|
|
default : |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else if (huart->gState == HAL_UART_STATE_RESET) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_UART_MSPINIT_CB_ID : |
|
huart->MspInitCallback = pCallback; |
|
break; |
|
|
|
case HAL_UART_MSPDEINIT_CB_ID : |
|
huart->MspDeInitCallback = pCallback; |
|
break; |
|
|
|
default : |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
} |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Unregister an UART Callback |
|
* UART callaback is redirected to the weak predefined callback |
|
* @note The HAL_UART_UnRegisterCallback() may be called before HAL_UART_Init(), HAL_HalfDuplex_Init(), |
|
* HAL_LIN_Init(), HAL_MultiProcessor_Init() or HAL_RS485Ex_Init() in HAL_UART_STATE_RESET to un-register |
|
* callbacks for HAL_UART_MSPINIT_CB_ID and HAL_UART_MSPDEINIT_CB_ID |
|
* @param huart uart handle |
|
* @param CallbackID ID of the callback to be unregistered |
|
* This parameter can be one of the following values: |
|
* @arg @ref HAL_UART_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID |
|
* @arg @ref HAL_UART_TX_COMPLETE_CB_ID Tx Complete Callback ID |
|
* @arg @ref HAL_UART_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID |
|
* @arg @ref HAL_UART_RX_COMPLETE_CB_ID Rx Complete Callback ID |
|
* @arg @ref HAL_UART_ERROR_CB_ID Error Callback ID |
|
* @arg @ref HAL_UART_ABORT_COMPLETE_CB_ID Abort Complete Callback ID |
|
* @arg @ref HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID |
|
* @arg @ref HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID |
|
* @arg @ref HAL_UART_WAKEUP_CB_ID Wakeup Callback ID |
|
* @arg @ref HAL_UART_RX_FIFO_FULL_CB_ID Rx Fifo Full Callback ID |
|
* @arg @ref HAL_UART_TX_FIFO_EMPTY_CB_ID Tx Fifo Empty Callback ID |
|
* @arg @ref HAL_UART_MSPINIT_CB_ID MspInit Callback ID |
|
* @arg @ref HAL_UART_MSPDEINIT_CB_ID MspDeInit Callback ID |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_UnRegisterCallback(UART_HandleTypeDef *huart, HAL_UART_CallbackIDTypeDef CallbackID) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
if (HAL_UART_STATE_READY == huart->gState) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_UART_TX_HALFCOMPLETE_CB_ID : |
|
huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_TX_COMPLETE_CB_ID : |
|
huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_RX_HALFCOMPLETE_CB_ID : |
|
huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_RX_COMPLETE_CB_ID : |
|
huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_ERROR_CB_ID : |
|
huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ |
|
break; |
|
|
|
case HAL_UART_ABORT_COMPLETE_CB_ID : |
|
huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_ABORT_TRANSMIT_COMPLETE_CB_ID : |
|
huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak |
|
AbortTransmitCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_ABORT_RECEIVE_COMPLETE_CB_ID : |
|
huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak |
|
AbortReceiveCpltCallback */ |
|
break; |
|
|
|
case HAL_UART_WAKEUP_CB_ID : |
|
huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */ |
|
break; |
|
|
|
case HAL_UART_RX_FIFO_FULL_CB_ID : |
|
huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ |
|
break; |
|
|
|
case HAL_UART_TX_FIFO_EMPTY_CB_ID : |
|
huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ |
|
break; |
|
|
|
case HAL_UART_MSPINIT_CB_ID : |
|
huart->MspInitCallback = HAL_UART_MspInit; /* Legacy weak MspInitCallback */ |
|
break; |
|
|
|
case HAL_UART_MSPDEINIT_CB_ID : |
|
huart->MspDeInitCallback = HAL_UART_MspDeInit; /* Legacy weak MspDeInitCallback */ |
|
break; |
|
|
|
default : |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else if (HAL_UART_STATE_RESET == huart->gState) |
|
{ |
|
switch (CallbackID) |
|
{ |
|
case HAL_UART_MSPINIT_CB_ID : |
|
huart->MspInitCallback = HAL_UART_MspInit; |
|
break; |
|
|
|
case HAL_UART_MSPDEINIT_CB_ID : |
|
huart->MspDeInitCallback = HAL_UART_MspDeInit; |
|
break; |
|
|
|
default : |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
} |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief Register a User UART Rx Event Callback |
|
* To be used instead of the weak predefined callback |
|
* @param huart Uart handle |
|
* @param pCallback Pointer to the Rx Event Callback function |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_RegisterRxEventCallback(UART_HandleTypeDef *huart, pUART_RxEventCallbackTypeDef pCallback) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
if (pCallback == NULL) |
|
{ |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
return HAL_ERROR; |
|
} |
|
|
|
/* Process locked */ |
|
__HAL_LOCK(huart); |
|
|
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
huart->RxEventCallback = pCallback; |
|
} |
|
else |
|
{ |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
} |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return status; |
|
} |
|
|
|
/** |
|
* @brief UnRegister the UART Rx Event Callback |
|
* UART Rx Event Callback is redirected to the weak HAL_UARTEx_RxEventCallback() predefined callback |
|
* @param huart Uart handle |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_UnRegisterRxEventCallback(UART_HandleTypeDef *huart) |
|
{ |
|
HAL_StatusTypeDef status = HAL_OK; |
|
|
|
/* Process locked */ |
|
__HAL_LOCK(huart); |
|
|
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak UART Rx Event Callback */ |
|
} |
|
else |
|
{ |
|
huart->ErrorCode |= HAL_UART_ERROR_INVALID_CALLBACK; |
|
|
|
status = HAL_ERROR; |
|
} |
|
|
|
/* Release Lock */ |
|
__HAL_UNLOCK(huart); |
|
return status; |
|
} |
|
|
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup UART_Exported_Functions_Group2 IO operation functions |
|
* @brief UART Transmit/Receive functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### IO operation functions ##### |
|
=============================================================================== |
|
This subsection provides a set of functions allowing to manage the UART asynchronous |
|
and Half duplex data transfers. |
|
|
|
(#) There are two mode of transfer: |
|
(+) Blocking mode: The communication is performed in polling mode. |
|
The HAL status of all data processing is returned by the same function |
|
after finishing transfer. |
|
(+) Non-Blocking mode: The communication is performed using Interrupts |
|
or DMA, These API's return the HAL status. |
|
The end of the data processing will be indicated through the |
|
dedicated UART IRQ when using Interrupt mode or the DMA IRQ when |
|
using DMA mode. |
|
The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks |
|
will be executed respectively at the end of the transmit or Receive process |
|
The HAL_UART_ErrorCallback()user callback will be executed when a communication error is detected |
|
|
|
(#) Blocking mode API's are : |
|
(+) HAL_UART_Transmit() |
|
(+) HAL_UART_Receive() |
|
|
|
(#) Non-Blocking mode API's with Interrupt are : |
|
(+) HAL_UART_Transmit_IT() |
|
(+) HAL_UART_Receive_IT() |
|
(+) HAL_UART_IRQHandler() |
|
|
|
(#) Non-Blocking mode API's with DMA are : |
|
(+) HAL_UART_Transmit_DMA() |
|
(+) HAL_UART_Receive_DMA() |
|
(+) HAL_UART_DMAPause() |
|
(+) HAL_UART_DMAResume() |
|
(+) HAL_UART_DMAStop() |
|
|
|
(#) A set of Transfer Complete Callbacks are provided in Non_Blocking mode: |
|
(+) HAL_UART_TxHalfCpltCallback() |
|
(+) HAL_UART_TxCpltCallback() |
|
(+) HAL_UART_RxHalfCpltCallback() |
|
(+) HAL_UART_RxCpltCallback() |
|
(+) HAL_UART_ErrorCallback() |
|
|
|
(#) Non-Blocking mode transfers could be aborted using Abort API's : |
|
(+) HAL_UART_Abort() |
|
(+) HAL_UART_AbortTransmit() |
|
(+) HAL_UART_AbortReceive() |
|
(+) HAL_UART_Abort_IT() |
|
(+) HAL_UART_AbortTransmit_IT() |
|
(+) HAL_UART_AbortReceive_IT() |
|
|
|
(#) For Abort services based on interrupts (HAL_UART_Abortxxx_IT), a set of Abort Complete Callbacks are provided: |
|
(+) HAL_UART_AbortCpltCallback() |
|
(+) HAL_UART_AbortTransmitCpltCallback() |
|
(+) HAL_UART_AbortReceiveCpltCallback() |
|
|
|
(#) A Rx Event Reception Callback (Rx event notification) is available for Non_Blocking modes of enhanced |
|
reception services: |
|
(+) HAL_UARTEx_RxEventCallback() |
|
|
|
(#) In Non-Blocking mode transfers, possible errors are split into 2 categories. |
|
Errors are handled as follows : |
|
(+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is |
|
to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error |
|
in Interrupt mode reception . |
|
Received character is then retrieved and stored in Rx buffer, Error code is set to allow user |
|
to identify error type, and HAL_UART_ErrorCallback() user callback is executed. |
|
Transfer is kept ongoing on UART side. |
|
If user wants to abort it, Abort services should be called by user. |
|
(+) Error is considered as Blocking : Transfer could not be completed properly and is aborted. |
|
This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. |
|
Error code is set to allow user to identify error type, and HAL_UART_ErrorCallback() |
|
user callback is executed. |
|
|
|
-@- In the Half duplex communication, it is forbidden to run the transmit |
|
and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX can't be useful. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Send an amount of data in blocking mode. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the sent data is handled as a set of u16. In this case, Size must indicate the number |
|
* of u16 provided through pData. |
|
* @note When FIFO mode is enabled, writing a data in the TDR register adds one |
|
* data to the TXFIFO. Write operations to the TDR register are performed |
|
* when TXFNF flag is set. From hardware perspective, TXFNF flag and |
|
* TXE are mapped on the same bit-field. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) |
|
* (as sent data will be handled using u16 pointer cast). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required |
|
* to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be sent. |
|
* @param Timeout Timeout duration. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size, uint32_t Timeout) |
|
{ |
|
const uint8_t *pdata8bits; |
|
const uint16_t *pdata16bits; |
|
uint32_t tickstart; |
|
|
|
/* Check that a Tx process is not already ongoing */ |
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a u16 frontier, as data to be filled into TDR will be |
|
handled through a u16 cast. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->gState = HAL_UART_STATE_BUSY_TX; |
|
|
|
/* Init tickstart for timeout management */ |
|
tickstart = HAL_GetTick(); |
|
|
|
huart->TxXferSize = Size; |
|
huart->TxXferCount = Size; |
|
|
|
/* In case of 9bits/No Parity transfer, pData needs to be handled as a uint16_t pointer */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
pdata8bits = NULL; |
|
pdata16bits = (const uint16_t *) pData; |
|
} |
|
else |
|
{ |
|
pdata8bits = pData; |
|
pdata16bits = NULL; |
|
} |
|
|
|
while (huart->TxXferCount > 0U) |
|
{ |
|
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
if (pdata8bits == NULL) |
|
{ |
|
huart->Instance->TDR = (uint16_t)(*pdata16bits & 0x01FFU); |
|
pdata16bits++; |
|
} |
|
else |
|
{ |
|
huart->Instance->TDR = (uint8_t)(*pdata8bits & 0xFFU); |
|
pdata8bits++; |
|
} |
|
huart->TxXferCount--; |
|
} |
|
|
|
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
|
|
/* At end of Tx process, restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Receive an amount of data in blocking mode. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the received data is handled as a set of u16. In this case, Size must indicate the number |
|
* of u16 available through pData. |
|
* @note When FIFO mode is enabled, the RXFNE flag is set as long as the RXFIFO |
|
* is not empty. Read operations from the RDR register are performed when |
|
* RXFNE flag is set. From hardware perspective, RXFNE flag and |
|
* RXNE are mapped on the same bit-field. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer for storing data to be received, should be aligned on a half word frontier |
|
* (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required |
|
* to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be received. |
|
* @param Timeout Timeout duration. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout) |
|
{ |
|
uint8_t *pdata8bits; |
|
uint16_t *pdata16bits; |
|
uint16_t uhMask; |
|
uint32_t tickstart; |
|
|
|
/* Check that a Rx process is not already ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a u16 frontier, as data to be received from RDR will be |
|
handled through a u16 cast. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->RxState = HAL_UART_STATE_BUSY_RX; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Init tickstart for timeout management */ |
|
tickstart = HAL_GetTick(); |
|
|
|
huart->RxXferSize = Size; |
|
huart->RxXferCount = Size; |
|
|
|
/* Computation of UART mask to apply to RDR register */ |
|
UART_MASK_COMPUTATION(huart); |
|
uhMask = huart->Mask; |
|
|
|
/* In case of 9bits/No Parity transfer, pRxData needs to be handled as a uint16_t pointer */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
pdata8bits = NULL; |
|
pdata16bits = (uint16_t *) pData; |
|
} |
|
else |
|
{ |
|
pdata8bits = pData; |
|
pdata16bits = NULL; |
|
} |
|
|
|
/* as long as data have to be received */ |
|
while (huart->RxXferCount > 0U) |
|
{ |
|
if (UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
if (pdata8bits == NULL) |
|
{ |
|
*pdata16bits = (uint16_t)(huart->Instance->RDR & uhMask); |
|
pdata16bits++; |
|
} |
|
else |
|
{ |
|
*pdata8bits = (uint8_t)(huart->Instance->RDR & (uint8_t)uhMask); |
|
pdata8bits++; |
|
} |
|
huart->RxXferCount--; |
|
} |
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Send an amount of data in interrupt mode. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the sent data is handled as a set of u16. In this case, Size must indicate the number |
|
* of u16 provided through pData. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) |
|
* (as sent data will be handled using u16 pointer cast). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required |
|
* to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be sent. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size) |
|
{ |
|
/* Check that a Tx process is not already ongoing */ |
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a u16 frontier, as data to be filled into TDR will be |
|
handled through a u16 cast. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
huart->pTxBuffPtr = pData; |
|
huart->TxXferSize = Size; |
|
huart->TxXferCount = Size; |
|
huart->TxISR = NULL; |
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->gState = HAL_UART_STATE_BUSY_TX; |
|
|
|
/* Configure Tx interrupt processing */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
/* Set the Tx ISR function pointer according to the data word length */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
huart->TxISR = UART_TxISR_16BIT_FIFOEN; |
|
} |
|
else |
|
{ |
|
huart->TxISR = UART_TxISR_8BIT_FIFOEN; |
|
} |
|
|
|
/* Enable the TX FIFO threshold interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); |
|
} |
|
else |
|
{ |
|
/* Set the Tx ISR function pointer according to the data word length */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
huart->TxISR = UART_TxISR_16BIT; |
|
} |
|
else |
|
{ |
|
huart->TxISR = UART_TxISR_8BIT; |
|
} |
|
|
|
/* Enable the Transmit Data Register Empty interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Receive an amount of data in interrupt mode. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the received data is handled as a set of u16. In this case, Size must indicate the number |
|
* of u16 available through pData. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer for storing data to be received, should be aligned on a half word frontier |
|
* (16 bits) (as received data will be handled using u16 pointer cast). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required |
|
* to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be received. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
{ |
|
/* Check that a Rx process is not already ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a u16 frontier, as data to be received from RDR will be |
|
handled through a u16 cast. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
/* Set Reception type to Standard reception */ |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
/* Check that USART RTOEN bit is set */ |
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) |
|
{ |
|
/* Enable the UART Receiver Timeout Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE); |
|
} |
|
} |
|
|
|
return (UART_Start_Receive_IT(huart, pData, Size)); |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Send an amount of data in DMA mode. |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the sent data is handled as a set of u16. In this case, Size must indicate the number |
|
* of u16 provided through pData. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer containing data to be sent, should be aligned on a half word frontier (16 bits) |
|
* (as sent data will be handled by DMA from halfword frontier). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required |
|
* to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be sent. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, const uint8_t *pData, uint16_t Size) |
|
{ |
|
/* Check that a Tx process is not already ongoing */ |
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a u16 frontier, as data copy into TDR will be |
|
handled by DMA from a u16 frontier. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
huart->pTxBuffPtr = pData; |
|
huart->TxXferSize = Size; |
|
huart->TxXferCount = Size; |
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->gState = HAL_UART_STATE_BUSY_TX; |
|
|
|
if (huart->hdmatx != NULL) |
|
{ |
|
/* Set the UART DMA transfer complete callback */ |
|
huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt; |
|
|
|
/* Set the UART DMA Half transfer complete callback */ |
|
huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
huart->hdmatx->XferErrorCallback = UART_DMAError; |
|
|
|
/* Set the DMA abort callback */ |
|
huart->hdmatx->XferAbortCallback = NULL; |
|
|
|
/* Enable the UART transmit DMA channel */ |
|
if (HAL_DMA_Start_IT(huart->hdmatx, (uint32_t)huart->pTxBuffPtr, (uint32_t)&huart->Instance->TDR, Size) != HAL_OK) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
/* Restore huart->gState to ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
return HAL_ERROR; |
|
} |
|
} |
|
/* Clear the TC flag in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_TCF); |
|
|
|
/* Enable the DMA transfer for transmit request by setting the DMAT bit |
|
in the UART CR3 register */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Receive an amount of data in DMA mode. |
|
* @note When the UART parity is enabled (PCE = 1), the received data contain |
|
* the parity bit (MSB position). |
|
* @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* the received data is handled as a set of u16. In this case, Size must indicate the number |
|
* of u16 available through pData. |
|
* @note Dual core specific: there is no support for unaligned accesses on the Cortex-M0+ processor. |
|
* When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), |
|
* address of user data buffer for storing data to be received, should be aligned on a half word frontier |
|
* (16 bits) (as received data will be handled by DMA from halfword frontier). Depending on compilation chain, |
|
* use of specific alignment compilation directives or pragmas might be required |
|
* to ensure proper alignment for pData. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be received. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
{ |
|
/* Check that a Rx process is not already ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_READY) |
|
{ |
|
if ((pData == NULL) || (Size == 0U)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
#if defined(CORE_CM0PLUS) |
|
/* In case of 9bits/No Parity transfer, pData buffer provided as input parameter |
|
should be aligned on a u16 frontier, as data copy from RDR will be |
|
handled by DMA from a u16 frontier. */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
if ((((uint32_t)pData) & 1U) != 0U) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* CORE_CM0PLUS */ |
|
/* Set Reception type to Standard reception */ |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
/* Check that USART RTOEN bit is set */ |
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) |
|
{ |
|
/* Enable the UART Receiver Timeout Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RTOIE); |
|
} |
|
} |
|
|
|
return (UART_Start_Receive_DMA(huart, pData, Size)); |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Pause the DMA Transfer. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart) |
|
{ |
|
const HAL_UART_StateTypeDef gstate = huart->gState; |
|
const HAL_UART_StateTypeDef rxstate = huart->RxState; |
|
|
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && |
|
(gstate == HAL_UART_STATE_BUSY_TX)) |
|
{ |
|
/* Disable the UART DMA Tx request */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
} |
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && |
|
(rxstate == HAL_UART_STATE_BUSY_RX)) |
|
{ |
|
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Disable the UART DMA Rx request */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Resume the DMA Transfer. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart) |
|
{ |
|
if (huart->gState == HAL_UART_STATE_BUSY_TX) |
|
{ |
|
/* Enable the UART DMA Tx request */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
} |
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
|
{ |
|
/* Clear the Overrun flag before resuming the Rx transfer */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); |
|
|
|
/* Re-enable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
|
if (huart->Init.Parity != UART_PARITY_NONE) |
|
{ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
} |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Enable the UART DMA Rx request */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Stop the DMA Transfer. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart) |
|
{ |
|
/* The Lock is not implemented on this API to allow the user application |
|
to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback() / |
|
HAL_UART_TxHalfCpltCallback / HAL_UART_RxHalfCpltCallback: |
|
indeed, when HAL_DMA_Abort() API is called, the DMA TX/RX Transfer or Half Transfer complete |
|
interrupt is generated if the DMA transfer interruption occurs at the middle or at the end of |
|
the stream and the corresponding call back is executed. */ |
|
|
|
const HAL_UART_StateTypeDef gstate = huart->gState; |
|
const HAL_UART_StateTypeDef rxstate = huart->RxState; |
|
|
|
/* Stop UART DMA Tx request if ongoing */ |
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && |
|
(gstate == HAL_UART_STATE_BUSY_TX)) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
/* Abort the UART DMA Tx channel */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
|
{ |
|
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
UART_EndTxTransfer(huart); |
|
} |
|
|
|
/* Stop UART DMA Rx request if ongoing */ |
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && |
|
(rxstate == HAL_UART_STATE_BUSY_RX)) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* Abort the UART DMA Rx channel */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
|
{ |
|
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
UART_EndRxTransfer(huart); |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Abort ongoing transfers (blocking mode). |
|
* @param huart UART handle. |
|
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. |
|
* This procedure performs following operations : |
|
* - Disable UART Interrupts (Tx and Rx) |
|
* - Disable the DMA transfer in the peripheral register (if enabled) |
|
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
|
* - Set handle State to READY |
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable TXE, TC, RXNE, PE, RXFT, TXFT and ERR (Frame error, noise error, overrun error) interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | |
|
USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE); |
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
|
} |
|
|
|
/* Abort the UART DMA Tx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
|
{ |
|
/* Disable the UART DMA Tx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback to Null. |
|
No call back execution at end of DMA abort procedure */ |
|
huart->hdmatx->XferAbortCallback = NULL; |
|
|
|
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
|
{ |
|
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Abort the UART DMA Rx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
/* Disable the UART DMA Rx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback to Null. |
|
No call back execution at end of DMA abort procedure */ |
|
huart->hdmarx->XferAbortCallback = NULL; |
|
|
|
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
|
{ |
|
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Reset Tx and Rx transfer counters */ |
|
huart->TxXferCount = 0U; |
|
huart->RxXferCount = 0U; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Flush the whole TX FIFO (if needed) */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); |
|
} |
|
|
|
/* Discard the received data */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
|
|
/* Restore huart->gState and huart->RxState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Abort ongoing Transmit transfer (blocking mode). |
|
* @param huart UART handle. |
|
* @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. |
|
* This procedure performs following operations : |
|
* - Disable UART Interrupts (Tx) |
|
* - Disable the DMA transfer in the peripheral register (if enabled) |
|
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
|
* - Set handle State to READY |
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable TCIE, TXEIE and TXFTIE interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); |
|
|
|
/* Abort the UART DMA Tx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
|
{ |
|
/* Disable the UART DMA Tx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
/* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback to Null. |
|
No call back execution at end of DMA abort procedure */ |
|
huart->hdmatx->XferAbortCallback = NULL; |
|
|
|
if (HAL_DMA_Abort(huart->hdmatx) != HAL_OK) |
|
{ |
|
if (HAL_DMA_GetError(huart->hdmatx) == HAL_DMA_ERROR_TIMEOUT) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Reset Tx transfer counter */ |
|
huart->TxXferCount = 0U; |
|
|
|
/* Flush the whole TX FIFO (if needed) */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); |
|
} |
|
|
|
/* Restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Abort ongoing Receive transfer (blocking mode). |
|
* @param huart UART handle. |
|
* @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. |
|
* This procedure performs following operations : |
|
* - Disable UART Interrupts (Rx) |
|
* - Disable the DMA transfer in the peripheral register (if enabled) |
|
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) |
|
* - Set handle State to READY |
|
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable PEIE, EIE, RXNEIE and RXFTIE interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE | USART_CR3_RXFTIE); |
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
|
} |
|
|
|
/* Abort the UART DMA Rx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
/* Disable the UART DMA Rx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback to Null. |
|
No call back execution at end of DMA abort procedure */ |
|
huart->hdmarx->XferAbortCallback = NULL; |
|
|
|
if (HAL_DMA_Abort(huart->hdmarx) != HAL_OK) |
|
{ |
|
if (HAL_DMA_GetError(huart->hdmarx) == HAL_DMA_ERROR_TIMEOUT) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
|
|
/* Reset Rx transfer counter */ |
|
huart->RxXferCount = 0U; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Discard the received data */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
|
|
/* Restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Abort ongoing transfers (Interrupt mode). |
|
* @param huart UART handle. |
|
* @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. |
|
* This procedure performs following operations : |
|
* - Disable UART Interrupts (Tx and Rx) |
|
* - Disable the DMA transfer in the peripheral register (if enabled) |
|
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
|
* - Set handle State to READY |
|
* - At abort completion, call user abort complete callback |
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
|
* considered as completed only when user abort complete callback is executed (not when exiting function). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t abortcplt = 1U; |
|
|
|
/* Disable interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_TCIE | USART_CR1_RXNEIE_RXFNEIE | |
|
USART_CR1_TXEIE_TXFNFIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE | USART_CR3_TXFTIE)); |
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
|
} |
|
|
|
/* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised |
|
before any call to DMA Abort functions */ |
|
/* DMA Tx Handle is valid */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
/* Set DMA Abort Complete callback if UART DMA Tx request if enabled. |
|
Otherwise, set it to NULL */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
|
{ |
|
huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback; |
|
} |
|
else |
|
{ |
|
huart->hdmatx->XferAbortCallback = NULL; |
|
} |
|
} |
|
/* DMA Rx Handle is valid */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* Set DMA Abort Complete callback if UART DMA Rx request if enabled. |
|
Otherwise, set it to NULL */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback; |
|
} |
|
else |
|
{ |
|
huart->hdmarx->XferAbortCallback = NULL; |
|
} |
|
} |
|
|
|
/* Abort the UART DMA Tx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
|
{ |
|
/* Disable DMA Tx at UART level */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
/* UART Tx DMA Abort callback has already been initialised : |
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
|
|
|
/* Abort DMA TX */ |
|
if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) |
|
{ |
|
huart->hdmatx->XferAbortCallback = NULL; |
|
} |
|
else |
|
{ |
|
abortcplt = 0U; |
|
} |
|
} |
|
} |
|
|
|
/* Abort the UART DMA Rx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
/* Disable the UART DMA Rx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* UART Rx DMA Abort callback has already been initialised : |
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
|
|
|
/* Abort DMA RX */ |
|
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
|
{ |
|
huart->hdmarx->XferAbortCallback = NULL; |
|
abortcplt = 1U; |
|
} |
|
else |
|
{ |
|
abortcplt = 0U; |
|
} |
|
} |
|
} |
|
|
|
/* if no DMA abort complete callback execution is required => call user Abort Complete callback */ |
|
if (abortcplt == 1U) |
|
{ |
|
/* Reset Tx and Rx transfer counters */ |
|
huart->TxXferCount = 0U; |
|
huart->RxXferCount = 0U; |
|
|
|
/* Clear ISR function pointers */ |
|
huart->RxISR = NULL; |
|
huart->TxISR = NULL; |
|
|
|
/* Reset errorCode */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Flush the whole TX FIFO (if needed) */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); |
|
} |
|
|
|
/* Discard the received data */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
|
|
/* Restore huart->gState and huart->RxState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort complete callback */ |
|
huart->AbortCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort complete callback */ |
|
HAL_UART_AbortCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Abort ongoing Transmit transfer (Interrupt mode). |
|
* @param huart UART handle. |
|
* @note This procedure could be used for aborting any ongoing Tx transfer started in Interrupt or DMA mode. |
|
* This procedure performs following operations : |
|
* - Disable UART Interrupts (Tx) |
|
* - Disable the DMA transfer in the peripheral register (if enabled) |
|
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
|
* - Set handle State to READY |
|
* - At abort completion, call user abort complete callback |
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
|
* considered as completed only when user abort complete callback is executed (not when exiting function). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TCIE | USART_CR1_TXEIE_TXFNFIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); |
|
|
|
/* Abort the UART DMA Tx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) |
|
{ |
|
/* Disable the UART DMA Tx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
/* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback : |
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
|
huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback; |
|
|
|
/* Abort DMA TX */ |
|
if (HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK) |
|
{ |
|
/* Call Directly huart->hdmatx->XferAbortCallback function in case of error */ |
|
huart->hdmatx->XferAbortCallback(huart->hdmatx); |
|
} |
|
} |
|
else |
|
{ |
|
/* Reset Tx transfer counter */ |
|
huart->TxXferCount = 0U; |
|
|
|
/* Clear TxISR function pointers */ |
|
huart->TxISR = NULL; |
|
|
|
/* Restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort Transmit Complete Callback */ |
|
huart->AbortTransmitCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort Transmit Complete Callback */ |
|
HAL_UART_AbortTransmitCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
else |
|
{ |
|
/* Reset Tx transfer counter */ |
|
huart->TxXferCount = 0U; |
|
|
|
/* Clear TxISR function pointers */ |
|
huart->TxISR = NULL; |
|
|
|
/* Flush the whole TX FIFO (if needed) */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); |
|
} |
|
|
|
/* Restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort Transmit Complete Callback */ |
|
huart->AbortTransmitCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort Transmit Complete Callback */ |
|
HAL_UART_AbortTransmitCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Abort ongoing Receive transfer (Interrupt mode). |
|
* @param huart UART handle. |
|
* @note This procedure could be used for aborting any ongoing Rx transfer started in Interrupt or DMA mode. |
|
* This procedure performs following operations : |
|
* - Disable UART Interrupts (Rx) |
|
* - Disable the DMA transfer in the peripheral register (if enabled) |
|
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) |
|
* - Set handle State to READY |
|
* - At abort completion, call user abort complete callback |
|
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be |
|
* considered as completed only when user abort complete callback is executed (not when exiting function). |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); |
|
|
|
/* If Reception till IDLE event was ongoing, disable IDLEIE interrupt */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_IDLEIE)); |
|
} |
|
|
|
/* Abort the UART DMA Rx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
/* Disable the UART DMA Rx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback : |
|
will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */ |
|
huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback; |
|
|
|
/* Abort DMA RX */ |
|
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
|
{ |
|
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ |
|
huart->hdmarx->XferAbortCallback(huart->hdmarx); |
|
} |
|
} |
|
else |
|
{ |
|
/* Reset Rx transfer counter */ |
|
huart->RxXferCount = 0U; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->pRxBuffPtr = NULL; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Discard the received data */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
|
|
/* Restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort Receive Complete Callback */ |
|
huart->AbortReceiveCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort Receive Complete Callback */ |
|
HAL_UART_AbortReceiveCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
else |
|
{ |
|
/* Reset Rx transfer counter */ |
|
huart->RxXferCount = 0U; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->pRxBuffPtr = NULL; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* As no DMA to be aborted, call directly user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort Receive Complete Callback */ |
|
huart->AbortReceiveCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort Receive Complete Callback */ |
|
HAL_UART_AbortReceiveCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Handle UART interrupt request. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t isrflags = READ_REG(huart->Instance->ISR); |
|
uint32_t cr1its = READ_REG(huart->Instance->CR1); |
|
uint32_t cr3its = READ_REG(huart->Instance->CR3); |
|
|
|
uint32_t errorflags; |
|
uint32_t errorcode; |
|
|
|
/* If no error occurs */ |
|
errorflags = (isrflags & (uint32_t)(USART_ISR_PE | USART_ISR_FE | USART_ISR_ORE | USART_ISR_NE | USART_ISR_RTOF)); |
|
if (errorflags == 0U) |
|
{ |
|
/* UART in mode Receiver ---------------------------------------------------*/ |
|
if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) |
|
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) |
|
|| ((cr3its & USART_CR3_RXFTIE) != 0U))) |
|
{ |
|
if (huart->RxISR != NULL) |
|
{ |
|
huart->RxISR(huart); |
|
} |
|
return; |
|
} |
|
} |
|
|
|
/* If some errors occur */ |
|
if ((errorflags != 0U) |
|
&& ((((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U) |
|
|| ((cr1its & (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | USART_CR1_RTOIE)) != 0U)))) |
|
{ |
|
/* UART parity error interrupt occurred -------------------------------------*/ |
|
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_PE; |
|
} |
|
|
|
/* UART frame error interrupt occurred --------------------------------------*/ |
|
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_FE; |
|
} |
|
|
|
/* UART noise error interrupt occurred --------------------------------------*/ |
|
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_NE; |
|
} |
|
|
|
/* UART Over-Run interrupt occurred -----------------------------------------*/ |
|
if (((isrflags & USART_ISR_ORE) != 0U) |
|
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) || |
|
((cr3its & (USART_CR3_RXFTIE | USART_CR3_EIE)) != 0U))) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_ORE; |
|
} |
|
|
|
/* UART Receiver Timeout interrupt occurred ---------------------------------*/ |
|
if (((isrflags & USART_ISR_RTOF) != 0U) && ((cr1its & USART_CR1_RTOIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_RTO; |
|
} |
|
|
|
/* Call UART Error Call back function if need be ----------------------------*/ |
|
if (huart->ErrorCode != HAL_UART_ERROR_NONE) |
|
{ |
|
/* UART in mode Receiver --------------------------------------------------*/ |
|
if (((isrflags & USART_ISR_RXNE_RXFNE) != 0U) |
|
&& (((cr1its & USART_CR1_RXNEIE_RXFNEIE) != 0U) |
|
|| ((cr3its & USART_CR3_RXFTIE) != 0U))) |
|
{ |
|
if (huart->RxISR != NULL) |
|
{ |
|
huart->RxISR(huart); |
|
} |
|
} |
|
|
|
/* If Error is to be considered as blocking : |
|
- Receiver Timeout error in Reception |
|
- Overrun error in Reception |
|
- any error occurs in DMA mode reception |
|
*/ |
|
errorcode = huart->ErrorCode; |
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) || |
|
((errorcode & (HAL_UART_ERROR_RTO | HAL_UART_ERROR_ORE)) != 0U)) |
|
{ |
|
/* Blocking error : transfer is aborted |
|
Set the UART state ready to be able to start again the process, |
|
Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ |
|
UART_EndRxTransfer(huart); |
|
|
|
/* Abort the UART DMA Rx channel if enabled */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
/* Disable the UART DMA Rx request if enabled */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* Abort the UART DMA Rx channel */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* Set the UART DMA Abort callback : |
|
will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */ |
|
huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError; |
|
|
|
/* Abort DMA RX */ |
|
if (HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK) |
|
{ |
|
/* Call Directly huart->hdmarx->XferAbortCallback function in case of error */ |
|
huart->hdmarx->XferAbortCallback(huart->hdmarx); |
|
} |
|
} |
|
else |
|
{ |
|
/* Call user error callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
|
|
} |
|
} |
|
else |
|
{ |
|
/* Call user error callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
else |
|
{ |
|
/* Non Blocking error : transfer could go on. |
|
Error is notified to user through user error callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
} |
|
} |
|
return; |
|
|
|
} /* End if some error occurs */ |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : */ |
|
if ((huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
&& ((isrflags & USART_ISR_IDLE) != 0U) |
|
&& ((cr1its & USART_ISR_IDLE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
|
|
/* Check if DMA mode is enabled in UART */ |
|
if (HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) |
|
{ |
|
/* DMA mode enabled */ |
|
/* Check received length : If all expected data are received, do nothing, |
|
(DMA cplt callback will be called). |
|
Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ |
|
uint16_t nb_remaining_rx_data = (uint16_t) __HAL_DMA_GET_COUNTER(huart->hdmarx); |
|
if ((nb_remaining_rx_data > 0U) |
|
&& (nb_remaining_rx_data < huart->RxXferSize)) |
|
{ |
|
/* Reception is not complete */ |
|
huart->RxXferCount = nb_remaining_rx_data; |
|
|
|
/* In Normal mode, end DMA xfer and HAL UART Rx process*/ |
|
if (HAL_IS_BIT_CLR(huart->hdmarx->Instance->CCR, DMA_CCR_CIRC)) |
|
{ |
|
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Disable the DMA transfer for the receiver request by resetting the DMAR bit |
|
in the UART CR3 register */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
|
|
/* Last bytes received, so no need as the abort is immediate */ |
|
(void)HAL_DMA_Abort(huart->hdmarx); |
|
} |
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution; |
|
In this case, Rx Event type is Idle Event */ |
|
huart->RxEventType = HAL_UART_RXEVENT_IDLE; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, (huart->RxXferSize - huart->RxXferCount)); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
return; |
|
} |
|
else |
|
{ |
|
/* DMA mode not enabled */ |
|
/* Check received length : If all expected data are received, do nothing. |
|
Otherwise, if at least one data has already been received, IDLE event is to be notified to user */ |
|
uint16_t nb_rx_data = huart->RxXferSize - huart->RxXferCount; |
|
if ((huart->RxXferCount > 0U) |
|
&& (nb_rx_data > 0U)) |
|
{ |
|
/* Disable the UART Parity Error Interrupt and RXNE interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); |
|
|
|
/* Disable the UART Error Interrupt:(Frame error, noise error, overrun error) and RX FIFO Threshold interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); |
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->RxISR = NULL; |
|
|
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution; |
|
In this case, Rx Event type is Idle Event */ |
|
huart->RxEventType = HAL_UART_RXEVENT_IDLE; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx complete callback*/ |
|
huart->RxEventCallback(huart, nb_rx_data); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, nb_rx_data); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
return; |
|
} |
|
} |
|
|
|
/* UART wakeup from Stop mode interrupt occurred ---------------------------*/ |
|
if (((isrflags & USART_ISR_WUF) != 0U) && ((cr3its & USART_CR3_WUFIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_WUF); |
|
|
|
/* UART Rx state is not reset as a reception process might be ongoing. |
|
If UART handle state fields need to be reset to READY, this could be done in Wakeup callback */ |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Wakeup Callback */ |
|
huart->WakeupCallback(huart); |
|
#else |
|
/* Call legacy weak Wakeup Callback */ |
|
HAL_UARTEx_WakeupCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
return; |
|
} |
|
|
|
/* UART in mode Transmitter ------------------------------------------------*/ |
|
if (((isrflags & USART_ISR_TXE_TXFNF) != 0U) |
|
&& (((cr1its & USART_CR1_TXEIE_TXFNFIE) != 0U) |
|
|| ((cr3its & USART_CR3_TXFTIE) != 0U))) |
|
{ |
|
if (huart->TxISR != NULL) |
|
{ |
|
huart->TxISR(huart); |
|
} |
|
return; |
|
} |
|
|
|
/* UART in mode Transmitter (transmission end) -----------------------------*/ |
|
if (((isrflags & USART_ISR_TC) != 0U) && ((cr1its & USART_CR1_TCIE) != 0U)) |
|
{ |
|
UART_EndTransmit_IT(huart); |
|
return; |
|
} |
|
|
|
/* UART TX Fifo Empty occurred ----------------------------------------------*/ |
|
if (((isrflags & USART_ISR_TXFE) != 0U) && ((cr1its & USART_CR1_TXFEIE) != 0U)) |
|
{ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Tx Fifo Empty Callback */ |
|
huart->TxFifoEmptyCallback(huart); |
|
#else |
|
/* Call legacy weak Tx Fifo Empty Callback */ |
|
HAL_UARTEx_TxFifoEmptyCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
return; |
|
} |
|
|
|
/* UART RX Fifo Full occurred ----------------------------------------------*/ |
|
if (((isrflags & USART_ISR_RXFF) != 0U) && ((cr1its & USART_CR1_RXFFIE) != 0U)) |
|
{ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Rx Fifo Full Callback */ |
|
huart->RxFifoFullCallback(huart); |
|
#else |
|
/* Call legacy weak Rx Fifo Full Callback */ |
|
HAL_UARTEx_RxFifoFullCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
return; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Tx Transfer completed callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_TxCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Tx Half Transfer completed callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE: This function should not be modified, when the callback is needed, |
|
the HAL_UART_TxHalfCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Rx Transfer completed callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_RxCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Rx Half Transfer completed callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE: This function should not be modified, when the callback is needed, |
|
the HAL_UART_RxHalfCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief UART error callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_ErrorCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief UART Abort Complete callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_AbortCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_AbortCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief UART Abort Complete callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief UART Abort Receive Complete callback. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
__weak void HAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef *huart) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @brief Reception Event Callback (Rx event notification called after use of advanced reception service). |
|
* @param huart UART handle |
|
* @param Size Number of data available in application reception buffer (indicates a position in |
|
* reception buffer until which, data are available) |
|
* @retval None |
|
*/ |
|
__weak void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) |
|
{ |
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(huart); |
|
UNUSED(Size); |
|
|
|
/* NOTE : This function should not be modified, when the callback is needed, |
|
the HAL_UARTEx_RxEventCallback can be implemented in the user file. |
|
*/ |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions |
|
* @brief UART control functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Peripheral Control functions ##### |
|
=============================================================================== |
|
[..] |
|
This subsection provides a set of functions allowing to control the UART. |
|
(+) HAL_UART_ReceiverTimeout_Config() API allows to configure the receiver timeout value on the fly |
|
(+) HAL_UART_EnableReceiverTimeout() API enables the receiver timeout feature |
|
(+) HAL_UART_DisableReceiverTimeout() API disables the receiver timeout feature |
|
(+) HAL_MultiProcessor_EnableMuteMode() API enables mute mode |
|
(+) HAL_MultiProcessor_DisableMuteMode() API disables mute mode |
|
(+) HAL_MultiProcessor_EnterMuteMode() API enters mute mode |
|
(+) UART_SetConfig() API configures the UART peripheral |
|
(+) UART_AdvFeatureConfig() API optionally configures the UART advanced features |
|
(+) UART_CheckIdleState() API ensures that TEACK and/or REACK are set after initialization |
|
(+) HAL_HalfDuplex_EnableTransmitter() API disables receiver and enables transmitter |
|
(+) HAL_HalfDuplex_EnableReceiver() API disables transmitter and enables receiver |
|
(+) HAL_LIN_SendBreak() API transmits the break characters |
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Update on the fly the receiver timeout value in RTOR register. |
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains |
|
* the configuration information for the specified UART module. |
|
* @param TimeoutValue receiver timeout value in number of baud blocks. The timeout |
|
* value must be less or equal to 0x0FFFFFFFF. |
|
* @retval None |
|
*/ |
|
void HAL_UART_ReceiverTimeout_Config(UART_HandleTypeDef *huart, uint32_t TimeoutValue) |
|
{ |
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
assert_param(IS_UART_RECEIVER_TIMEOUT_VALUE(TimeoutValue)); |
|
MODIFY_REG(huart->Instance->RTOR, USART_RTOR_RTO, TimeoutValue); |
|
} |
|
} |
|
|
|
/** |
|
* @brief Enable the UART receiver timeout feature. |
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains |
|
* the configuration information for the specified UART module. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_EnableReceiverTimeout(UART_HandleTypeDef *huart) |
|
{ |
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Set the USART RTOEN bit */ |
|
SET_BIT(huart->Instance->CR2, USART_CR2_RTOEN); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Disable the UART receiver timeout feature. |
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains |
|
* the configuration information for the specified UART module. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_UART_DisableReceiverTimeout(UART_HandleTypeDef *huart) |
|
{ |
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
if (huart->gState == HAL_UART_STATE_READY) |
|
{ |
|
/* Process Locked */ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Clear the USART RTOEN bit */ |
|
CLEAR_BIT(huart->Instance->CR2, USART_CR2_RTOEN); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
else |
|
{ |
|
return HAL_BUSY; |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
/** |
|
* @brief Enable UART in mute mode (does not mean UART enters mute mode; |
|
* to enter mute mode, HAL_MultiProcessor_EnterMuteMode() API must be called). |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_MultiProcessor_EnableMuteMode(UART_HandleTypeDef *huart) |
|
{ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Enable USART mute mode by setting the MME bit in the CR1 register */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_MME); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
/** |
|
* @brief Disable UART mute mode (does not mean the UART actually exits mute mode |
|
* as it may not have been in mute mode at this very moment). |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_MultiProcessor_DisableMuteMode(UART_HandleTypeDef *huart) |
|
{ |
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Disable USART mute mode by clearing the MME bit in the CR1 register */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_MME); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
return (UART_CheckIdleState(huart)); |
|
} |
|
|
|
/** |
|
* @brief Enter UART mute mode (means UART actually enters mute mode). |
|
* @note To exit from mute mode, HAL_MultiProcessor_DisableMuteMode() API must be called. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
void HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_MUTE_MODE_REQUEST); |
|
} |
|
|
|
/** |
|
* @brief Enable the UART transmitter and disable the UART receiver. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart) |
|
{ |
|
__HAL_LOCK(huart); |
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Clear TE and RE bits */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); |
|
|
|
/* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TE); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Enable the UART receiver and disable the UART transmitter. |
|
* @param huart UART handle. |
|
* @retval HAL status. |
|
*/ |
|
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart) |
|
{ |
|
__HAL_LOCK(huart); |
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Clear TE and RE bits */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TE | USART_CR1_RE)); |
|
|
|
/* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RE); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
|
|
/** |
|
* @brief Transmit break characters. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_UART_LIN_INSTANCE(huart->Instance)); |
|
|
|
__HAL_LOCK(huart); |
|
|
|
huart->gState = HAL_UART_STATE_BUSY; |
|
|
|
/* Send break characters */ |
|
__HAL_UART_SEND_REQ(huart, UART_SENDBREAK_REQUEST); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Error functions |
|
* @brief UART Peripheral State functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### Peripheral State and Error functions ##### |
|
============================================================================== |
|
[..] |
|
This subsection provides functions allowing to : |
|
(+) Return the UART handle state. |
|
(+) Return the UART handle error code |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Return the UART handle state. |
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains |
|
* the configuration information for the specified UART. |
|
* @retval HAL state |
|
*/ |
|
HAL_UART_StateTypeDef HAL_UART_GetState(const UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t temp1; |
|
uint32_t temp2; |
|
temp1 = huart->gState; |
|
temp2 = huart->RxState; |
|
|
|
return (HAL_UART_StateTypeDef)(temp1 | temp2); |
|
} |
|
|
|
/** |
|
* @brief Return the UART handle error code. |
|
* @param huart Pointer to a UART_HandleTypeDef structure that contains |
|
* the configuration information for the specified UART. |
|
* @retval UART Error Code |
|
*/ |
|
uint32_t HAL_UART_GetError(const UART_HandleTypeDef *huart) |
|
{ |
|
return huart->ErrorCode; |
|
} |
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup UART_Private_Functions UART Private Functions |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Initialize the callbacks to their default values. |
|
* @param huart UART handle. |
|
* @retval none |
|
*/ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
void UART_InitCallbacksToDefault(UART_HandleTypeDef *huart) |
|
{ |
|
/* Init the UART Callback settings */ |
|
huart->TxHalfCpltCallback = HAL_UART_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ |
|
huart->TxCpltCallback = HAL_UART_TxCpltCallback; /* Legacy weak TxCpltCallback */ |
|
huart->RxHalfCpltCallback = HAL_UART_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ |
|
huart->RxCpltCallback = HAL_UART_RxCpltCallback; /* Legacy weak RxCpltCallback */ |
|
huart->ErrorCallback = HAL_UART_ErrorCallback; /* Legacy weak ErrorCallback */ |
|
huart->AbortCpltCallback = HAL_UART_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ |
|
huart->AbortTransmitCpltCallback = HAL_UART_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ |
|
huart->AbortReceiveCpltCallback = HAL_UART_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ |
|
huart->WakeupCallback = HAL_UARTEx_WakeupCallback; /* Legacy weak WakeupCallback */ |
|
huart->RxFifoFullCallback = HAL_UARTEx_RxFifoFullCallback; /* Legacy weak RxFifoFullCallback */ |
|
huart->TxFifoEmptyCallback = HAL_UARTEx_TxFifoEmptyCallback; /* Legacy weak TxFifoEmptyCallback */ |
|
huart->RxEventCallback = HAL_UARTEx_RxEventCallback; /* Legacy weak RxEventCallback */ |
|
|
|
} |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
|
|
/** |
|
* @brief Configure the UART peripheral. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef UART_SetConfig(UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t tmpreg; |
|
uint16_t brrtemp; |
|
UART_ClockSourceTypeDef clocksource; |
|
uint32_t usartdiv; |
|
HAL_StatusTypeDef ret = HAL_OK; |
|
uint32_t lpuart_ker_ck_pres; |
|
uint32_t pclk; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate)); |
|
assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength)); |
|
if (UART_INSTANCE_LOWPOWER(huart)) |
|
{ |
|
assert_param(IS_LPUART_STOPBITS(huart->Init.StopBits)); |
|
} |
|
else |
|
{ |
|
assert_param(IS_UART_STOPBITS(huart->Init.StopBits)); |
|
assert_param(IS_UART_ONE_BIT_SAMPLE(huart->Init.OneBitSampling)); |
|
} |
|
|
|
assert_param(IS_UART_PARITY(huart->Init.Parity)); |
|
assert_param(IS_UART_MODE(huart->Init.Mode)); |
|
assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl)); |
|
assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling)); |
|
assert_param(IS_UART_PRESCALER(huart->Init.ClockPrescaler)); |
|
|
|
/*-------------------------- USART CR1 Configuration -----------------------*/ |
|
/* Clear M, PCE, PS, TE, RE and OVER8 bits and configure |
|
* the UART Word Length, Parity, Mode and oversampling: |
|
* set the M bits according to huart->Init.WordLength value |
|
* set PCE and PS bits according to huart->Init.Parity value |
|
* set TE and RE bits according to huart->Init.Mode value |
|
* set OVER8 bit according to huart->Init.OverSampling value */ |
|
tmpreg = (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling ; |
|
MODIFY_REG(huart->Instance->CR1, USART_CR1_FIELDS, tmpreg); |
|
|
|
/*-------------------------- USART CR2 Configuration -----------------------*/ |
|
/* Configure the UART Stop Bits: Set STOP[13:12] bits according |
|
* to huart->Init.StopBits value */ |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits); |
|
|
|
/*-------------------------- USART CR3 Configuration -----------------------*/ |
|
/* Configure |
|
* - UART HardWare Flow Control: set CTSE and RTSE bits according |
|
* to huart->Init.HwFlowCtl value |
|
* - one-bit sampling method versus three samples' majority rule according |
|
* to huart->Init.OneBitSampling (not applicable to LPUART) */ |
|
tmpreg = (uint32_t)huart->Init.HwFlowCtl; |
|
|
|
if (!(UART_INSTANCE_LOWPOWER(huart))) |
|
{ |
|
tmpreg |= huart->Init.OneBitSampling; |
|
} |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_FIELDS, tmpreg); |
|
|
|
/*-------------------------- USART PRESC Configuration -----------------------*/ |
|
/* Configure |
|
* - UART Clock Prescaler : set PRESCALER according to huart->Init.ClockPrescaler value */ |
|
MODIFY_REG(huart->Instance->PRESC, USART_PRESC_PRESCALER, huart->Init.ClockPrescaler); |
|
|
|
/*-------------------------- USART BRR Configuration -----------------------*/ |
|
UART_GETCLOCKSOURCE(huart, clocksource); |
|
|
|
/* Check LPUART instance */ |
|
if (UART_INSTANCE_LOWPOWER(huart)) |
|
{ |
|
/* Retrieve frequency clock */ |
|
switch (clocksource) |
|
{ |
|
case UART_CLOCKSOURCE_PCLK1: |
|
pclk = HAL_RCC_GetPCLK1Freq(); |
|
break; |
|
case UART_CLOCKSOURCE_HSI: |
|
pclk = (uint32_t) HSI_VALUE; |
|
break; |
|
case UART_CLOCKSOURCE_SYSCLK: |
|
pclk = HAL_RCC_GetSysClockFreq(); |
|
break; |
|
case UART_CLOCKSOURCE_LSE: |
|
pclk = (uint32_t) LSE_VALUE; |
|
break; |
|
default: |
|
pclk = 0U; |
|
ret = HAL_ERROR; |
|
break; |
|
} |
|
|
|
/* If proper clock source reported */ |
|
if (pclk != 0U) |
|
{ |
|
/* Compute clock after Prescaler */ |
|
lpuart_ker_ck_pres = (pclk / UARTPrescTable[huart->Init.ClockPrescaler]); |
|
|
|
/* Ensure that Frequency clock is in the range [3 * baudrate, 4096 * baudrate] */ |
|
if ((lpuart_ker_ck_pres < (3U * huart->Init.BaudRate)) || |
|
(lpuart_ker_ck_pres > (4096U * huart->Init.BaudRate))) |
|
{ |
|
ret = HAL_ERROR; |
|
} |
|
else |
|
{ |
|
/* Check computed UsartDiv value is in allocated range |
|
(it is forbidden to write values lower than 0x300 in the LPUART_BRR register) */ |
|
usartdiv = (uint32_t)(UART_DIV_LPUART(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler)); |
|
if ((usartdiv >= LPUART_BRR_MIN) && (usartdiv <= LPUART_BRR_MAX)) |
|
{ |
|
huart->Instance->BRR = usartdiv; |
|
} |
|
else |
|
{ |
|
ret = HAL_ERROR; |
|
} |
|
} /* if ( (lpuart_ker_ck_pres < (3 * huart->Init.BaudRate) ) || |
|
(lpuart_ker_ck_pres > (4096 * huart->Init.BaudRate) )) */ |
|
} /* if (pclk != 0) */ |
|
} |
|
/* Check UART Over Sampling to set Baud Rate Register */ |
|
else if (huart->Init.OverSampling == UART_OVERSAMPLING_8) |
|
{ |
|
switch (clocksource) |
|
{ |
|
case UART_CLOCKSOURCE_PCLK1: |
|
pclk = HAL_RCC_GetPCLK1Freq(); |
|
break; |
|
case UART_CLOCKSOURCE_PCLK2: |
|
pclk = HAL_RCC_GetPCLK2Freq(); |
|
break; |
|
case UART_CLOCKSOURCE_HSI: |
|
pclk = (uint32_t) HSI_VALUE; |
|
break; |
|
case UART_CLOCKSOURCE_SYSCLK: |
|
pclk = HAL_RCC_GetSysClockFreq(); |
|
break; |
|
case UART_CLOCKSOURCE_LSE: |
|
pclk = (uint32_t) LSE_VALUE; |
|
break; |
|
default: |
|
pclk = 0U; |
|
ret = HAL_ERROR; |
|
break; |
|
} |
|
|
|
/* USARTDIV must be greater than or equal to 0d16 */ |
|
if (pclk != 0U) |
|
{ |
|
usartdiv = (uint32_t)(UART_DIV_SAMPLING8(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler)); |
|
if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX)) |
|
{ |
|
brrtemp = (uint16_t)(usartdiv & 0xFFF0U); |
|
brrtemp |= (uint16_t)((usartdiv & (uint16_t)0x000FU) >> 1U); |
|
huart->Instance->BRR = brrtemp; |
|
} |
|
else |
|
{ |
|
ret = HAL_ERROR; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
switch (clocksource) |
|
{ |
|
case UART_CLOCKSOURCE_PCLK1: |
|
pclk = HAL_RCC_GetPCLK1Freq(); |
|
break; |
|
case UART_CLOCKSOURCE_PCLK2: |
|
pclk = HAL_RCC_GetPCLK2Freq(); |
|
break; |
|
case UART_CLOCKSOURCE_HSI: |
|
pclk = (uint32_t) HSI_VALUE; |
|
break; |
|
case UART_CLOCKSOURCE_SYSCLK: |
|
pclk = HAL_RCC_GetSysClockFreq(); |
|
break; |
|
case UART_CLOCKSOURCE_LSE: |
|
pclk = (uint32_t) LSE_VALUE; |
|
break; |
|
default: |
|
pclk = 0U; |
|
ret = HAL_ERROR; |
|
break; |
|
} |
|
|
|
if (pclk != 0U) |
|
{ |
|
/* USARTDIV must be greater than or equal to 0d16 */ |
|
usartdiv = (uint32_t)(UART_DIV_SAMPLING16(pclk, huart->Init.BaudRate, huart->Init.ClockPrescaler)); |
|
if ((usartdiv >= UART_BRR_MIN) && (usartdiv <= UART_BRR_MAX)) |
|
{ |
|
huart->Instance->BRR = (uint16_t)usartdiv; |
|
} |
|
else |
|
{ |
|
ret = HAL_ERROR; |
|
} |
|
} |
|
} |
|
|
|
/* Initialize the number of data to process during RX/TX ISR execution */ |
|
huart->NbTxDataToProcess = 1; |
|
huart->NbRxDataToProcess = 1; |
|
|
|
/* Clear ISR function pointers */ |
|
huart->RxISR = NULL; |
|
huart->TxISR = NULL; |
|
|
|
return ret; |
|
} |
|
|
|
/** |
|
* @brief Configure the UART peripheral advanced features. |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
void UART_AdvFeatureConfig(UART_HandleTypeDef *huart) |
|
{ |
|
/* Check whether the set of advanced features to configure is properly set */ |
|
assert_param(IS_UART_ADVFEATURE_INIT(huart->AdvancedInit.AdvFeatureInit)); |
|
|
|
/* if required, configure TX pin active level inversion */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_TXINVERT_INIT)) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_TXINV(huart->AdvancedInit.TxPinLevelInvert)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_TXINV, huart->AdvancedInit.TxPinLevelInvert); |
|
} |
|
|
|
/* if required, configure RX pin active level inversion */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXINVERT_INIT)) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_RXINV(huart->AdvancedInit.RxPinLevelInvert)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_RXINV, huart->AdvancedInit.RxPinLevelInvert); |
|
} |
|
|
|
/* if required, configure data inversion */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DATAINVERT_INIT)) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_DATAINV(huart->AdvancedInit.DataInvert)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_DATAINV, huart->AdvancedInit.DataInvert); |
|
} |
|
|
|
/* if required, configure RX/TX pins swap */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_SWAP_INIT)) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_SWAP(huart->AdvancedInit.Swap)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_SWAP, huart->AdvancedInit.Swap); |
|
} |
|
|
|
/* if required, configure RX overrun detection disabling */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_RXOVERRUNDISABLE_INIT)) |
|
{ |
|
assert_param(IS_UART_OVERRUN(huart->AdvancedInit.OverrunDisable)); |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_OVRDIS, huart->AdvancedInit.OverrunDisable); |
|
} |
|
|
|
/* if required, configure DMA disabling on reception error */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_DMADISABLEONERROR_INIT)) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_DMAONRXERROR(huart->AdvancedInit.DMADisableonRxError)); |
|
MODIFY_REG(huart->Instance->CR3, USART_CR3_DDRE, huart->AdvancedInit.DMADisableonRxError); |
|
} |
|
|
|
/* if required, configure auto Baud rate detection scheme */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_AUTOBAUDRATE_INIT)) |
|
{ |
|
assert_param(IS_USART_AUTOBAUDRATE_DETECTION_INSTANCE(huart->Instance)); |
|
assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATE(huart->AdvancedInit.AutoBaudRateEnable)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ABREN, huart->AdvancedInit.AutoBaudRateEnable); |
|
/* set auto Baudrate detection parameters if detection is enabled */ |
|
if (huart->AdvancedInit.AutoBaudRateEnable == UART_ADVFEATURE_AUTOBAUDRATE_ENABLE) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_AUTOBAUDRATEMODE(huart->AdvancedInit.AutoBaudRateMode)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_ABRMODE, huart->AdvancedInit.AutoBaudRateMode); |
|
} |
|
} |
|
|
|
/* if required, configure MSB first on communication line */ |
|
if (HAL_IS_BIT_SET(huart->AdvancedInit.AdvFeatureInit, UART_ADVFEATURE_MSBFIRST_INIT)) |
|
{ |
|
assert_param(IS_UART_ADVFEATURE_MSBFIRST(huart->AdvancedInit.MSBFirst)); |
|
MODIFY_REG(huart->Instance->CR2, USART_CR2_MSBFIRST, huart->AdvancedInit.MSBFirst); |
|
} |
|
} |
|
|
|
/** |
|
* @brief Check the UART Idle State. |
|
* @param huart UART handle. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef UART_CheckIdleState(UART_HandleTypeDef *huart) |
|
{ |
|
uint32_t tickstart; |
|
|
|
/* Initialize the UART ErrorCode */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
|
|
/* Init tickstart for timeout management */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Check if the Transmitter is enabled */ |
|
if ((huart->Instance->CR1 & USART_CR1_TE) == USART_CR1_TE) |
|
{ |
|
/* Wait until TEACK flag is set */ |
|
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_TEACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) |
|
{ |
|
/* Timeout occurred */ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Check if the Receiver is enabled */ |
|
if ((huart->Instance->CR1 & USART_CR1_RE) == USART_CR1_RE) |
|
{ |
|
/* Wait until REACK flag is set */ |
|
if (UART_WaitOnFlagUntilTimeout(huart, USART_ISR_REACK, RESET, tickstart, HAL_UART_TIMEOUT_VALUE) != HAL_OK) |
|
{ |
|
/* Timeout occurred */ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Initialize the UART State */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief This function handles UART Communication Timeout. It waits |
|
* until a flag is no longer in the specified status. |
|
* @param huart UART handle. |
|
* @param Flag Specifies the UART flag to check |
|
* @param Status The actual Flag status (SET or RESET) |
|
* @param Tickstart Tick start value |
|
* @param Timeout Timeout duration |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, |
|
uint32_t Tickstart, uint32_t Timeout) |
|
{ |
|
/* Wait until flag is set */ |
|
while ((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) |
|
{ |
|
/* Check for the Timeout */ |
|
if (Timeout != HAL_MAX_DELAY) |
|
{ |
|
if (((HAL_GetTick() - Tickstart) > Timeout) || (Timeout == 0U)) |
|
{ |
|
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) |
|
interrupts for the interrupt process */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | |
|
USART_CR1_TXEIE_TXFNFIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
|
|
if (READ_BIT(huart->Instance->CR1, USART_CR1_RE) != 0U) |
|
{ |
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_RTOF) == SET) |
|
{ |
|
/* Clear Receiver Timeout flag*/ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_RTOF); |
|
|
|
/* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) |
|
interrupts for the interrupt process */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE | |
|
USART_CR1_TXEIE_TXFNFIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ErrorCode = HAL_UART_ERROR_RTO; |
|
|
|
/* Process Unlocked */ |
|
__HAL_UNLOCK(huart); |
|
|
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Start Receive operation in interrupt mode. |
|
* @note This function could be called by all HAL UART API providing reception in Interrupt mode. |
|
* @note When calling this function, parameters validity is considered as already checked, |
|
* i.e. Rx State, buffer address, ... |
|
* UART Handle is assumed as Locked. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be received. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef UART_Start_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
{ |
|
huart->pRxBuffPtr = pData; |
|
huart->RxXferSize = Size; |
|
huart->RxXferCount = Size; |
|
huart->RxISR = NULL; |
|
|
|
/* Computation of UART mask to apply to RDR register */ |
|
UART_MASK_COMPUTATION(huart); |
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->RxState = HAL_UART_STATE_BUSY_RX; |
|
|
|
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Configure Rx interrupt processing */ |
|
if ((huart->FifoMode == UART_FIFOMODE_ENABLE) && (Size >= huart->NbRxDataToProcess)) |
|
{ |
|
/* Set the Rx ISR function pointer according to the data word length */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
huart->RxISR = UART_RxISR_16BIT_FIFOEN; |
|
} |
|
else |
|
{ |
|
huart->RxISR = UART_RxISR_8BIT_FIFOEN; |
|
} |
|
|
|
/* Enable the UART Parity Error interrupt and RX FIFO Threshold interrupt */ |
|
if (huart->Init.Parity != UART_PARITY_NONE) |
|
{ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
} |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_RXFTIE); |
|
} |
|
else |
|
{ |
|
/* Set the Rx ISR function pointer according to the data word length */ |
|
if ((huart->Init.WordLength == UART_WORDLENGTH_9B) && (huart->Init.Parity == UART_PARITY_NONE)) |
|
{ |
|
huart->RxISR = UART_RxISR_16BIT; |
|
} |
|
else |
|
{ |
|
huart->RxISR = UART_RxISR_8BIT; |
|
} |
|
|
|
/* Enable the UART Parity Error interrupt and Data Register Not Empty interrupt */ |
|
if (huart->Init.Parity != UART_PARITY_NONE) |
|
{ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE_RXFNEIE); |
|
} |
|
else |
|
{ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); |
|
} |
|
} |
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Start Receive operation in DMA mode. |
|
* @note This function could be called by all HAL UART API providing reception in DMA mode. |
|
* @note When calling this function, parameters validity is considered as already checked, |
|
* i.e. Rx State, buffer address, ... |
|
* UART Handle is assumed as Locked. |
|
* @param huart UART handle. |
|
* @param pData Pointer to data buffer (u8 or u16 data elements). |
|
* @param Size Amount of data elements (u8 or u16) to be received. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef UART_Start_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size) |
|
{ |
|
huart->pRxBuffPtr = pData; |
|
huart->RxXferSize = Size; |
|
|
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
huart->RxState = HAL_UART_STATE_BUSY_RX; |
|
|
|
if (huart->hdmarx != NULL) |
|
{ |
|
/* Set the UART DMA transfer complete callback */ |
|
huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt; |
|
|
|
/* Set the UART DMA Half transfer complete callback */ |
|
huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt; |
|
|
|
/* Set the DMA error callback */ |
|
huart->hdmarx->XferErrorCallback = UART_DMAError; |
|
|
|
/* Set the DMA abort callback */ |
|
huart->hdmarx->XferAbortCallback = NULL; |
|
|
|
/* Enable the DMA channel */ |
|
if (HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->RDR, (uint32_t)huart->pRxBuffPtr, Size) != HAL_OK) |
|
{ |
|
/* Set error code to DMA */ |
|
huart->ErrorCode = HAL_UART_ERROR_DMA; |
|
|
|
/* Restore huart->RxState to ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
/* Enable the UART Parity Error Interrupt */ |
|
if (huart->Init.Parity != UART_PARITY_NONE) |
|
{ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
} |
|
|
|
/* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Enable the DMA transfer for the receiver request by setting the DMAR bit |
|
in the UART CR3 register */ |
|
ATOMIC_SET_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
|
|
/** |
|
* @brief End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion). |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_EndTxTransfer(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable TXEIE, TCIE, TXFT interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE_TXFNFIE | USART_CR1_TCIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_TXFTIE)); |
|
|
|
/* At end of Tx process, restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
} |
|
|
|
|
|
/** |
|
* @brief End ongoing Rx transfer on UART peripheral (following error detection or Reception completion). |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_EndRxTransfer(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); |
|
|
|
/* In case of reception waiting for IDLE event, disable also the IDLE IE interrupt source */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
} |
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Reset RxIsr function pointer */ |
|
huart->RxISR = NULL; |
|
} |
|
|
|
|
|
/** |
|
* @brief DMA UART transmit process complete callback. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
/* DMA Normal mode */ |
|
if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) |
|
{ |
|
huart->TxXferCount = 0U; |
|
|
|
/* Disable the DMA transfer for transmit request by resetting the DMAT bit |
|
in the UART CR3 register */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT); |
|
|
|
/* Enable the UART Transmit Complete Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
|
} |
|
/* DMA Circular mode */ |
|
else |
|
{ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Tx complete callback*/ |
|
huart->TxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Tx complete callback*/ |
|
HAL_UART_TxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
|
|
/** |
|
* @brief DMA UART transmit process half complete callback. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Tx Half complete callback*/ |
|
huart->TxHalfCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Tx Half complete callback*/ |
|
HAL_UART_TxHalfCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief DMA UART receive process complete callback. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
/* DMA Normal mode */ |
|
if (HAL_IS_BIT_CLR(hdma->Instance->CCR, DMA_CCR_CIRC)) |
|
{ |
|
huart->RxXferCount = 0U; |
|
|
|
/* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Disable the DMA transfer for the receiver request by resetting the DMAR bit |
|
in the UART CR3 register */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR); |
|
|
|
/* At end of Rx process, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
/* If Reception till IDLE event has been selected, Disable IDLE Interrupt */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
} |
|
} |
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution; |
|
In this case, Rx Event type is Transfer Complete */ |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : use Rx Event callback */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, huart->RxXferSize); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
else |
|
{ |
|
/* In other cases : use Rx Complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx complete callback*/ |
|
huart->RxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Rx complete callback*/ |
|
HAL_UART_RxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
|
|
/** |
|
* @brief DMA UART receive process half complete callback. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
/* Initialize type of RxEvent that correspond to RxEvent callback execution; |
|
In this case, Rx Event type is Half Transfer */ |
|
huart->RxEventType = HAL_UART_RXEVENT_HT; |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : use Rx Event callback */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, huart->RxXferSize / 2U); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize / 2U); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
else |
|
{ |
|
/* In other cases : use Rx Half Complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Half complete callback*/ |
|
huart->RxHalfCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Rx Half complete callback*/ |
|
HAL_UART_RxHalfCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
|
|
/** |
|
* @brief DMA UART communication error callback. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMAError(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
const HAL_UART_StateTypeDef gstate = huart->gState; |
|
const HAL_UART_StateTypeDef rxstate = huart->RxState; |
|
|
|
/* Stop UART DMA Tx request if ongoing */ |
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT)) && |
|
(gstate == HAL_UART_STATE_BUSY_TX)) |
|
{ |
|
huart->TxXferCount = 0U; |
|
UART_EndTxTransfer(huart); |
|
} |
|
|
|
/* Stop UART DMA Rx request if ongoing */ |
|
if ((HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR)) && |
|
(rxstate == HAL_UART_STATE_BUSY_RX)) |
|
{ |
|
huart->RxXferCount = 0U; |
|
UART_EndRxTransfer(huart); |
|
} |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_DMA; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief DMA UART communication abort callback, when initiated by HAL services on Error |
|
* (To be called at end of DMA Abort procedure following error occurrence). |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
huart->RxXferCount = 0U; |
|
huart->TxXferCount = 0U; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief DMA UART Tx communication abort callback, when initiated by user |
|
* (To be called at end of DMA Tx Abort procedure following user abort request). |
|
* @note When this callback is executed, User Abort complete call back is called only if no |
|
* Abort still ongoing for Rx DMA Handle. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
huart->hdmatx->XferAbortCallback = NULL; |
|
|
|
/* Check if an Abort process is still ongoing */ |
|
if (huart->hdmarx != NULL) |
|
{ |
|
if (huart->hdmarx->XferAbortCallback != NULL) |
|
{ |
|
return; |
|
} |
|
} |
|
|
|
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ |
|
huart->TxXferCount = 0U; |
|
huart->RxXferCount = 0U; |
|
|
|
/* Reset errorCode */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Flush the whole TX FIFO (if needed) */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); |
|
} |
|
|
|
/* Restore huart->gState and huart->RxState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Call user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort complete callback */ |
|
huart->AbortCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort complete callback */ |
|
HAL_UART_AbortCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
|
|
/** |
|
* @brief DMA UART Rx communication abort callback, when initiated by user |
|
* (To be called at end of DMA Rx Abort procedure following user abort request). |
|
* @note When this callback is executed, User Abort complete call back is called only if no |
|
* Abort still ongoing for Tx DMA Handle. |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
huart->hdmarx->XferAbortCallback = NULL; |
|
|
|
/* Check if an Abort process is still ongoing */ |
|
if (huart->hdmatx != NULL) |
|
{ |
|
if (huart->hdmatx->XferAbortCallback != NULL) |
|
{ |
|
return; |
|
} |
|
} |
|
|
|
/* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ |
|
huart->TxXferCount = 0U; |
|
huart->RxXferCount = 0U; |
|
|
|
/* Reset errorCode */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Discard the received data */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
|
|
/* Restore huart->gState and huart->RxState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Call user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort complete callback */ |
|
huart->AbortCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort complete callback */ |
|
HAL_UART_AbortCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
|
|
/** |
|
* @brief DMA UART Tx communication abort callback, when initiated by user by a call to |
|
* HAL_UART_AbortTransmit_IT API (Abort only Tx transfer) |
|
* (This callback is executed at end of DMA Tx Abort procedure following user abort request, |
|
* and leads to user Tx Abort Complete callback execution). |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)(hdma->Parent); |
|
|
|
huart->TxXferCount = 0U; |
|
|
|
/* Flush the whole TX FIFO (if needed) */ |
|
if (huart->FifoMode == UART_FIFOMODE_ENABLE) |
|
{ |
|
__HAL_UART_SEND_REQ(huart, UART_TXDATA_FLUSH_REQUEST); |
|
} |
|
|
|
/* Restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Call user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort Transmit Complete Callback */ |
|
huart->AbortTransmitCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort Transmit Complete Callback */ |
|
HAL_UART_AbortTransmitCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief DMA UART Rx communication abort callback, when initiated by user by a call to |
|
* HAL_UART_AbortReceive_IT API (Abort only Rx transfer) |
|
* (This callback is executed at end of DMA Rx Abort procedure following user abort request, |
|
* and leads to user Rx Abort Complete callback execution). |
|
* @param hdma DMA handle. |
|
* @retval None |
|
*/ |
|
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) |
|
{ |
|
UART_HandleTypeDef *huart = (UART_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
|
|
|
huart->RxXferCount = 0U; |
|
|
|
/* Clear the Error flags in the ICR register */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_OREF | UART_CLEAR_NEF | UART_CLEAR_PEF | UART_CLEAR_FEF); |
|
|
|
/* Discard the received data */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
|
|
/* Restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Call user Abort complete callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/* Call registered Abort Receive Complete Callback */ |
|
huart->AbortReceiveCpltCallback(huart); |
|
#else |
|
/* Call legacy weak Abort Receive Complete Callback */ |
|
HAL_UART_AbortReceiveCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief TX interrupt handler for 7 or 8 bits data word length . |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Transmit_IT(). |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_TxISR_8BIT(UART_HandleTypeDef *huart) |
|
{ |
|
/* Check that a Tx process is ongoing */ |
|
if (huart->gState == HAL_UART_STATE_BUSY_TX) |
|
{ |
|
if (huart->TxXferCount == 0U) |
|
{ |
|
/* Disable the UART Transmit Data Register Empty Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); |
|
|
|
/* Enable the UART Transmit Complete Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
|
} |
|
else |
|
{ |
|
huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF); |
|
huart->pTxBuffPtr++; |
|
huart->TxXferCount--; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @brief TX interrupt handler for 9 bits data word length. |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Transmit_IT(). |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_TxISR_16BIT(UART_HandleTypeDef *huart) |
|
{ |
|
const uint16_t *tmp; |
|
|
|
/* Check that a Tx process is ongoing */ |
|
if (huart->gState == HAL_UART_STATE_BUSY_TX) |
|
{ |
|
if (huart->TxXferCount == 0U) |
|
{ |
|
/* Disable the UART Transmit Data Register Empty Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TXEIE_TXFNFIE); |
|
|
|
/* Enable the UART Transmit Complete Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
|
} |
|
else |
|
{ |
|
tmp = (const uint16_t *) huart->pTxBuffPtr; |
|
huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL); |
|
huart->pTxBuffPtr += 2U; |
|
huart->TxXferCount--; |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @brief TX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled. |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Transmit_IT(). |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_TxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart) |
|
{ |
|
uint16_t nb_tx_data; |
|
|
|
/* Check that a Tx process is ongoing */ |
|
if (huart->gState == HAL_UART_STATE_BUSY_TX) |
|
{ |
|
for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) |
|
{ |
|
if (huart->TxXferCount == 0U) |
|
{ |
|
/* Disable the TX FIFO threshold interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); |
|
|
|
/* Enable the UART Transmit Complete Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
|
|
|
break; /* force exit loop */ |
|
} |
|
else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U) |
|
{ |
|
huart->Instance->TDR = (uint8_t)(*huart->pTxBuffPtr & (uint8_t)0xFF); |
|
huart->pTxBuffPtr++; |
|
huart->TxXferCount--; |
|
} |
|
else |
|
{ |
|
/* Nothing to do */ |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @brief TX interrupt handler for 9 bits data word length and FIFO mode is enabled. |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Transmit_IT(). |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_TxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart) |
|
{ |
|
const uint16_t *tmp; |
|
uint16_t nb_tx_data; |
|
|
|
/* Check that a Tx process is ongoing */ |
|
if (huart->gState == HAL_UART_STATE_BUSY_TX) |
|
{ |
|
for (nb_tx_data = huart->NbTxDataToProcess ; nb_tx_data > 0U ; nb_tx_data--) |
|
{ |
|
if (huart->TxXferCount == 0U) |
|
{ |
|
/* Disable the TX FIFO threshold interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_TXFTIE); |
|
|
|
/* Enable the UART Transmit Complete Interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
|
|
|
break; /* force exit loop */ |
|
} |
|
else if (READ_BIT(huart->Instance->ISR, USART_ISR_TXE_TXFNF) != 0U) |
|
{ |
|
tmp = (const uint16_t *) huart->pTxBuffPtr; |
|
huart->Instance->TDR = (((uint32_t)(*tmp)) & 0x01FFUL); |
|
huart->pTxBuffPtr += 2U; |
|
huart->TxXferCount--; |
|
} |
|
else |
|
{ |
|
/* Nothing to do */ |
|
} |
|
} |
|
} |
|
} |
|
|
|
/** |
|
* @brief Wrap up transmission in non-blocking mode. |
|
* @param huart pointer to a UART_HandleTypeDef structure that contains |
|
* the configuration information for the specified UART module. |
|
* @retval None |
|
*/ |
|
static void UART_EndTransmit_IT(UART_HandleTypeDef *huart) |
|
{ |
|
/* Disable the UART Transmit Complete Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_TCIE); |
|
|
|
/* Tx process is ended, restore huart->gState to Ready */ |
|
huart->gState = HAL_UART_STATE_READY; |
|
|
|
/* Cleat TxISR function pointer */ |
|
huart->TxISR = NULL; |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Tx complete callback*/ |
|
huart->TxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Tx complete callback*/ |
|
HAL_UART_TxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
|
|
/** |
|
* @brief RX interrupt handler for 7 or 8 bits data word length . |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_RxISR_8BIT(UART_HandleTypeDef *huart) |
|
{ |
|
uint16_t uhMask = huart->Mask; |
|
uint16_t uhdata; |
|
|
|
/* Check that a Rx process is ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
|
{ |
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR); |
|
*huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); |
|
huart->pRxBuffPtr++; |
|
huart->RxXferCount--; |
|
|
|
if (huart->RxXferCount == 0U) |
|
{ |
|
/* Disable the UART Parity Error Interrupt and RXNE interrupts */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); |
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->RxISR = NULL; |
|
|
|
/* Initialize type of RxEvent to Transfer Complete */ |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
/* Check that USART RTOEN bit is set */ |
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) |
|
{ |
|
/* Enable the UART Receiver Timeout Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); |
|
} |
|
} |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
/* Set reception type to Standard */ |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Disable IDLE interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) |
|
{ |
|
/* Clear IDLE Flag */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
} |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, huart->RxXferSize); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
else |
|
{ |
|
/* Standard reception API called */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx complete callback*/ |
|
huart->RxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Rx complete callback*/ |
|
HAL_UART_RxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Clear RXNE interrupt flag */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
} |
|
} |
|
|
|
/** |
|
* @brief RX interrupt handler for 9 bits data word length . |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Receive_IT() |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_RxISR_16BIT(UART_HandleTypeDef *huart) |
|
{ |
|
uint16_t *tmp; |
|
uint16_t uhMask = huart->Mask; |
|
uint16_t uhdata; |
|
|
|
/* Check that a Rx process is ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
|
{ |
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR); |
|
tmp = (uint16_t *) huart->pRxBuffPtr ; |
|
*tmp = (uint16_t)(uhdata & uhMask); |
|
huart->pRxBuffPtr += 2U; |
|
huart->RxXferCount--; |
|
|
|
if (huart->RxXferCount == 0U) |
|
{ |
|
/* Disable the UART Parity Error Interrupt and RXNE interrupt*/ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE_RXFNEIE | USART_CR1_PEIE)); |
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE); |
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->RxISR = NULL; |
|
|
|
/* Initialize type of RxEvent to Transfer Complete */ |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
/* Check that USART RTOEN bit is set */ |
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) |
|
{ |
|
/* Enable the UART Receiver Timeout Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); |
|
} |
|
} |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
/* Set reception type to Standard */ |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Disable IDLE interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) |
|
{ |
|
/* Clear IDLE Flag */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
} |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, huart->RxXferSize); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
else |
|
{ |
|
/* Standard reception API called */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx complete callback*/ |
|
huart->RxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Rx complete callback*/ |
|
HAL_UART_RxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Clear RXNE interrupt flag */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
} |
|
} |
|
|
|
/** |
|
* @brief RX interrupt handler for 7 or 8 bits data word length and FIFO mode is enabled. |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Receive_IT() |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_RxISR_8BIT_FIFOEN(UART_HandleTypeDef *huart) |
|
{ |
|
uint16_t uhMask = huart->Mask; |
|
uint16_t uhdata; |
|
uint16_t nb_rx_data; |
|
uint16_t rxdatacount; |
|
uint32_t isrflags = READ_REG(huart->Instance->ISR); |
|
uint32_t cr1its = READ_REG(huart->Instance->CR1); |
|
uint32_t cr3its = READ_REG(huart->Instance->CR3); |
|
|
|
/* Check that a Rx process is ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
|
{ |
|
nb_rx_data = huart->NbRxDataToProcess; |
|
while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U)) |
|
{ |
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR); |
|
*huart->pRxBuffPtr = (uint8_t)(uhdata & (uint8_t)uhMask); |
|
huart->pRxBuffPtr++; |
|
huart->RxXferCount--; |
|
isrflags = READ_REG(huart->Instance->ISR); |
|
|
|
/* If some non blocking errors occurred */ |
|
if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U) |
|
{ |
|
/* UART parity error interrupt occurred -------------------------------------*/ |
|
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_PE; |
|
} |
|
|
|
/* UART frame error interrupt occurred --------------------------------------*/ |
|
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_FE; |
|
} |
|
|
|
/* UART noise error interrupt occurred --------------------------------------*/ |
|
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_NE; |
|
} |
|
|
|
/* Call UART Error Call back function if need be ----------------------------*/ |
|
if (huart->ErrorCode != HAL_UART_ERROR_NONE) |
|
{ |
|
/* Non Blocking error : transfer could go on. |
|
Error is notified to user through user error callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
} |
|
} |
|
|
|
if (huart->RxXferCount == 0U) |
|
{ |
|
/* Disable the UART Parity Error Interrupt and RXFT interrupt*/ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) |
|
and RX FIFO Threshold interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); |
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->RxISR = NULL; |
|
|
|
/* Initialize type of RxEvent to Transfer Complete */ |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
/* Check that USART RTOEN bit is set */ |
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) |
|
{ |
|
/* Enable the UART Receiver Timeout Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); |
|
} |
|
} |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
/* Set reception type to Standard */ |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Disable IDLE interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) |
|
{ |
|
/* Clear IDLE Flag */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
} |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, huart->RxXferSize); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
else |
|
{ |
|
/* Standard reception API called */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx complete callback*/ |
|
huart->RxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Rx complete callback*/ |
|
HAL_UART_RxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
} |
|
|
|
/* When remaining number of bytes to receive is less than the RX FIFO |
|
threshold, next incoming frames are processed as if FIFO mode was |
|
disabled (i.e. one interrupt per received frame). |
|
*/ |
|
rxdatacount = huart->RxXferCount; |
|
if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess)) |
|
{ |
|
/* Disable the UART RXFT interrupt*/ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE); |
|
|
|
/* Update the RxISR function pointer */ |
|
huart->RxISR = UART_RxISR_8BIT; |
|
|
|
/* Enable the UART Data Register Not Empty interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); |
|
} |
|
} |
|
else |
|
{ |
|
/* Clear RXNE interrupt flag */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
} |
|
} |
|
|
|
/** |
|
* @brief RX interrupt handler for 9 bits data word length and FIFO mode is enabled. |
|
* @note Function is called under interruption only, once |
|
* interruptions have been enabled by HAL_UART_Receive_IT() |
|
* @param huart UART handle. |
|
* @retval None |
|
*/ |
|
static void UART_RxISR_16BIT_FIFOEN(UART_HandleTypeDef *huart) |
|
{ |
|
uint16_t *tmp; |
|
uint16_t uhMask = huart->Mask; |
|
uint16_t uhdata; |
|
uint16_t nb_rx_data; |
|
uint16_t rxdatacount; |
|
uint32_t isrflags = READ_REG(huart->Instance->ISR); |
|
uint32_t cr1its = READ_REG(huart->Instance->CR1); |
|
uint32_t cr3its = READ_REG(huart->Instance->CR3); |
|
|
|
/* Check that a Rx process is ongoing */ |
|
if (huart->RxState == HAL_UART_STATE_BUSY_RX) |
|
{ |
|
nb_rx_data = huart->NbRxDataToProcess; |
|
while ((nb_rx_data > 0U) && ((isrflags & USART_ISR_RXNE_RXFNE) != 0U)) |
|
{ |
|
uhdata = (uint16_t) READ_REG(huart->Instance->RDR); |
|
tmp = (uint16_t *) huart->pRxBuffPtr ; |
|
*tmp = (uint16_t)(uhdata & uhMask); |
|
huart->pRxBuffPtr += 2U; |
|
huart->RxXferCount--; |
|
isrflags = READ_REG(huart->Instance->ISR); |
|
|
|
/* If some non blocking errors occurred */ |
|
if ((isrflags & (USART_ISR_PE | USART_ISR_FE | USART_ISR_NE)) != 0U) |
|
{ |
|
/* UART parity error interrupt occurred -------------------------------------*/ |
|
if (((isrflags & USART_ISR_PE) != 0U) && ((cr1its & USART_CR1_PEIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_PEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_PE; |
|
} |
|
|
|
/* UART frame error interrupt occurred --------------------------------------*/ |
|
if (((isrflags & USART_ISR_FE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_FEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_FE; |
|
} |
|
|
|
/* UART noise error interrupt occurred --------------------------------------*/ |
|
if (((isrflags & USART_ISR_NE) != 0U) && ((cr3its & USART_CR3_EIE) != 0U)) |
|
{ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_NEF); |
|
|
|
huart->ErrorCode |= HAL_UART_ERROR_NE; |
|
} |
|
|
|
/* Call UART Error Call back function if need be ----------------------------*/ |
|
if (huart->ErrorCode != HAL_UART_ERROR_NONE) |
|
{ |
|
/* Non Blocking error : transfer could go on. |
|
Error is notified to user through user error callback */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered error callback*/ |
|
huart->ErrorCallback(huart); |
|
#else |
|
/*Call legacy weak error callback*/ |
|
HAL_UART_ErrorCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
huart->ErrorCode = HAL_UART_ERROR_NONE; |
|
} |
|
} |
|
|
|
if (huart->RxXferCount == 0U) |
|
{ |
|
/* Disable the UART Parity Error Interrupt and RXFT interrupt*/ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE); |
|
|
|
/* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) |
|
and RX FIFO Threshold interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, (USART_CR3_EIE | USART_CR3_RXFTIE)); |
|
|
|
/* Rx process is completed, restore huart->RxState to Ready */ |
|
huart->RxState = HAL_UART_STATE_READY; |
|
|
|
/* Clear RxISR function pointer */ |
|
huart->RxISR = NULL; |
|
|
|
/* Initialize type of RxEvent to Transfer Complete */ |
|
huart->RxEventType = HAL_UART_RXEVENT_TC; |
|
|
|
if (!(IS_LPUART_INSTANCE(huart->Instance))) |
|
{ |
|
/* Check that USART RTOEN bit is set */ |
|
if (READ_BIT(huart->Instance->CR2, USART_CR2_RTOEN) != 0U) |
|
{ |
|
/* Enable the UART Receiver Timeout Interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_RTOIE); |
|
} |
|
} |
|
|
|
/* Check current reception Mode : |
|
If Reception till IDLE event has been selected : */ |
|
if (huart->ReceptionType == HAL_UART_RECEPTION_TOIDLE) |
|
{ |
|
/* Set reception type to Standard */ |
|
huart->ReceptionType = HAL_UART_RECEPTION_STANDARD; |
|
|
|
/* Disable IDLE interrupt */ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR1, USART_CR1_IDLEIE); |
|
|
|
if (__HAL_UART_GET_FLAG(huart, UART_FLAG_IDLE) == SET) |
|
{ |
|
/* Clear IDLE Flag */ |
|
__HAL_UART_CLEAR_FLAG(huart, UART_CLEAR_IDLEF); |
|
} |
|
|
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx Event callback*/ |
|
huart->RxEventCallback(huart, huart->RxXferSize); |
|
#else |
|
/*Call legacy weak Rx Event callback*/ |
|
HAL_UARTEx_RxEventCallback(huart, huart->RxXferSize); |
|
#endif /* (USE_HAL_UART_REGISTER_CALLBACKS) */ |
|
} |
|
else |
|
{ |
|
/* Standard reception API called */ |
|
#if (USE_HAL_UART_REGISTER_CALLBACKS == 1) |
|
/*Call registered Rx complete callback*/ |
|
huart->RxCpltCallback(huart); |
|
#else |
|
/*Call legacy weak Rx complete callback*/ |
|
HAL_UART_RxCpltCallback(huart); |
|
#endif /* USE_HAL_UART_REGISTER_CALLBACKS */ |
|
} |
|
} |
|
} |
|
|
|
/* When remaining number of bytes to receive is less than the RX FIFO |
|
threshold, next incoming frames are processed as if FIFO mode was |
|
disabled (i.e. one interrupt per received frame). |
|
*/ |
|
rxdatacount = huart->RxXferCount; |
|
if ((rxdatacount != 0U) && (rxdatacount < huart->NbRxDataToProcess)) |
|
{ |
|
/* Disable the UART RXFT interrupt*/ |
|
ATOMIC_CLEAR_BIT(huart->Instance->CR3, USART_CR3_RXFTIE); |
|
|
|
/* Update the RxISR function pointer */ |
|
huart->RxISR = UART_RxISR_16BIT; |
|
|
|
/* Enable the UART Data Register Not Empty interrupt */ |
|
ATOMIC_SET_BIT(huart->Instance->CR1, USART_CR1_RXNEIE_RXFNEIE); |
|
} |
|
} |
|
else |
|
{ |
|
/* Clear RXNE interrupt flag */ |
|
__HAL_UART_SEND_REQ(huart, UART_RXDATA_FLUSH_REQUEST); |
|
} |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
#endif /* HAL_UART_MODULE_ENABLED */ |
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
|