You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1403 lines
49 KiB
1403 lines
49 KiB
/** |
|
****************************************************************************** |
|
* @file stm32f1xx_hal_rcc.c |
|
* @author MCD Application Team |
|
* @brief RCC HAL module driver. |
|
* This file provides firmware functions to manage the following |
|
* functionalities of the Reset and Clock Control (RCC) peripheral: |
|
* + Initialization and de-initialization functions |
|
* + Peripheral Control functions |
|
* |
|
@verbatim |
|
============================================================================== |
|
##### RCC specific features ##### |
|
============================================================================== |
|
[..] |
|
After reset the device is running from Internal High Speed oscillator |
|
(HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled, |
|
and all peripherals are off except internal SRAM, Flash and JTAG. |
|
(+) There is no prescaler on High speed (AHB) and Low speed (APB) buses; |
|
all peripherals mapped on these buses are running at HSI speed. |
|
(+) The clock for all peripherals is switched off, except the SRAM and FLASH. |
|
(+) All GPIOs are in input floating state, except the JTAG pins which |
|
are assigned to be used for debug purpose. |
|
[..] Once the device started from reset, the user application has to: |
|
(+) Configure the clock source to be used to drive the System clock |
|
(if the application needs higher frequency/performance) |
|
(+) Configure the System clock frequency and Flash settings |
|
(+) Configure the AHB and APB buses prescalers |
|
(+) Enable the clock for the peripheral(s) to be used |
|
(+) Configure the clock source(s) for peripherals whose clocks are not |
|
derived from the System clock (I2S, RTC, ADC, USB OTG FS) |
|
|
|
##### RCC Limitations ##### |
|
============================================================================== |
|
[..] |
|
A delay between an RCC peripheral clock enable and the effective peripheral |
|
enabling should be taken into account in order to manage the peripheral read/write |
|
from/to registers. |
|
(+) This delay depends on the peripheral mapping. |
|
(++) AHB & APB peripherals, 1 dummy read is necessary |
|
|
|
[..] |
|
Workarounds: |
|
(#) For AHB & APB peripherals, a dummy read to the peripheral register has been |
|
inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro. |
|
|
|
@endverbatim |
|
****************************************************************************** |
|
* @attention |
|
* |
|
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2> |
|
* |
|
* Redistribution and use in source and binary forms, with or without modification, |
|
* are permitted provided that the following conditions are met: |
|
* 1. Redistributions of source code must retain the above copyright notice, |
|
* this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright notice, |
|
* this list of conditions and the following disclaimer in the documentation |
|
* and/or other materials provided with the distribution. |
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors |
|
* may be used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************** |
|
*/ |
|
|
|
/* Includes ------------------------------------------------------------------*/ |
|
#include "stm32f1xx_hal.h" |
|
|
|
/** @addtogroup STM32F1xx_HAL_Driver |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup RCC RCC |
|
* @brief RCC HAL module driver |
|
* @{ |
|
*/ |
|
|
|
#ifdef HAL_RCC_MODULE_ENABLED |
|
|
|
/* Private typedef -----------------------------------------------------------*/ |
|
/* Private define ------------------------------------------------------------*/ |
|
/** @defgroup RCC_Private_Constants RCC Private Constants |
|
* @{ |
|
*/ |
|
/** |
|
* @} |
|
*/ |
|
/* Private macro -------------------------------------------------------------*/ |
|
/** @defgroup RCC_Private_Macros RCC Private Macros |
|
* @{ |
|
*/ |
|
|
|
#define MCO1_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE() |
|
#define MCO1_GPIO_PORT GPIOA |
|
#define MCO1_PIN GPIO_PIN_8 |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Private variables ---------------------------------------------------------*/ |
|
/** @defgroup RCC_Private_Variables RCC Private Variables |
|
* @{ |
|
*/ |
|
/** |
|
* @} |
|
*/ |
|
|
|
/* Private function prototypes -----------------------------------------------*/ |
|
static void RCC_Delay(uint32_t mdelay); |
|
|
|
/* Exported functions --------------------------------------------------------*/ |
|
|
|
/** @defgroup RCC_Exported_Functions RCC Exported Functions |
|
* @{ |
|
*/ |
|
|
|
/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions |
|
* @brief Initialization and Configuration functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Initialization and de-initialization functions ##### |
|
=============================================================================== |
|
[..] |
|
This section provides functions allowing to configure the internal/external oscillators |
|
(HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1 |
|
and APB2). |
|
|
|
[..] Internal/external clock and PLL configuration |
|
(#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through |
|
the PLL as System clock source. |
|
(#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC |
|
clock source. |
|
|
|
(#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x) crystal oscillator used directly or |
|
through the PLL as System clock source. Can be used also as RTC clock source. |
|
|
|
(#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source. |
|
|
|
(#) PLL (clocked by HSI or HSE), featuring different output clocks: |
|
(++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx) |
|
(++) The second output is used to generate the clock for the USB OTG FS (48 MHz) |
|
|
|
(#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE() |
|
and if a HSE clock failure occurs(HSE used directly or through PLL as System |
|
clock source), the System clocks automatically switched to HSI and an interrupt |
|
is generated if enabled. The interrupt is linked to the Cortex-M3 NMI |
|
(Non-Maskable Interrupt) exception vector. |
|
|
|
(#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI, |
|
HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x |
|
|
|
[..] System, AHB and APB buses clocks configuration |
|
(#) Several clock sources can be used to drive the System clock (SYSCLK): HSI, |
|
HSE and PLL. |
|
The AHB clock (HCLK) is derived from System clock through configurable |
|
prescaler and used to clock the CPU, memory and peripherals mapped |
|
on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived |
|
from AHB clock through configurable prescalers and used to clock |
|
the peripherals mapped on these buses. You can use |
|
"@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks. |
|
|
|
-@- All the peripheral clocks are derived from the System clock (SYSCLK) except: |
|
(+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock |
|
divided by 128. |
|
(+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz |
|
to work correctly. This clock is derived of the main PLL through PLL Multiplier. |
|
(+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK |
|
(+@) IWDG clock which is always the LSI clock. |
|
|
|
(#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz. |
|
For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz. |
|
Depending on the SYSCLK frequency, the flash latency should be adapted accordingly. |
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/* |
|
Additional consideration on the SYSCLK based on Latency settings: |
|
+-----------------------------------------------+ |
|
| Latency | SYSCLK clock frequency (MHz) | |
|
|---------------|-------------------------------| |
|
|0WS(1CPU cycle)| 0 < SYSCLK <= 24 | |
|
|---------------|-------------------------------| |
|
|1WS(2CPU cycle)| 24 < SYSCLK <= 48 | |
|
|---------------|-------------------------------| |
|
|2WS(3CPU cycle)| 48 < SYSCLK <= 72 | |
|
+-----------------------------------------------+ |
|
*/ |
|
|
|
/** |
|
* @brief Resets the RCC clock configuration to the default reset state. |
|
* @note The default reset state of the clock configuration is given below: |
|
* - HSI ON and used as system clock source |
|
* - HSE, PLL, PLL2 and PLL3 are OFF |
|
* - AHB, APB1 and APB2 prescaler set to 1. |
|
* - CSS and MCO1 OFF |
|
* - All interrupts disabled |
|
* - All flags are cleared |
|
* @note This function does not modify the configuration of the |
|
* - Peripheral clocks |
|
* - LSI, LSE and RTC clocks |
|
* @retval HAL_StatusTypeDef |
|
*/ |
|
HAL_StatusTypeDef HAL_RCC_DeInit(void) |
|
{ |
|
uint32_t tickstart; |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Set HSION bit */ |
|
SET_BIT(RCC->CR, RCC_CR_HSION); |
|
|
|
/* Wait till HSI is ready */ |
|
while (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == RESET) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > HSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Set HSITRIM bits to the reset value */ |
|
MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (0x10U << RCC_CR_HSITRIM_Pos)); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Reset CFGR register */ |
|
CLEAR_REG(RCC->CFGR); |
|
|
|
/* Wait till clock switch is ready */ |
|
while (READ_BIT(RCC->CFGR, RCC_CFGR_SWS) != RESET) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > CLOCKSWITCH_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Update the SystemCoreClock global variable */ |
|
SystemCoreClock = HSI_VALUE; |
|
|
|
/* Adapt Systick interrupt period */ |
|
if(HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Second step is to clear PLLON bit */ |
|
CLEAR_BIT(RCC->CR, RCC_CR_PLLON); |
|
|
|
/* Wait till PLL is disabled */ |
|
while (READ_BIT(RCC->CR, RCC_CR_PLLRDY) != RESET) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Ensure to reset PLLSRC and PLLMUL bits */ |
|
CLEAR_REG(RCC->CFGR); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Reset HSEON & CSSON bits */ |
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON); |
|
|
|
/* Wait till HSE is disabled */ |
|
while (READ_BIT(RCC->CR, RCC_CR_HSERDY) != RESET) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > HSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Reset HSEBYP bit */ |
|
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); |
|
|
|
#if defined(RCC_PLL2_SUPPORT) |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Clear PLL2ON bit */ |
|
CLEAR_BIT(RCC->CR, RCC_CR_PLL2ON); |
|
|
|
/* Wait till PLL2 is disabled */ |
|
while (READ_BIT(RCC->CR, RCC_CR_PLL2RDY) != RESET) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > PLL2_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
#endif /* RCC_PLL2_SUPPORT */ |
|
|
|
#if defined(RCC_PLLI2S_SUPPORT) |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Clear PLL3ON bit */ |
|
CLEAR_BIT(RCC->CR, RCC_CR_PLL3ON); |
|
|
|
/* Wait till PLL3 is disabled */ |
|
while (READ_BIT(RCC->CR, RCC_CR_PLL3RDY) != RESET) |
|
{ |
|
if ((HAL_GetTick() - tickstart) > PLLI2S_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
#endif /* RCC_PLLI2S_SUPPORT */ |
|
|
|
#if defined(RCC_CFGR2_PREDIV1) |
|
/* Reset CFGR2 register */ |
|
CLEAR_REG(RCC->CFGR2); |
|
#endif /* RCC_CFGR2_PREDIV1 */ |
|
|
|
/* Reset all CSR flags */ |
|
SET_BIT(RCC->CSR, RCC_CSR_RMVF); |
|
|
|
/* Disable all interrupts */ |
|
CLEAR_REG(RCC->CIR); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the RCC Oscillators according to the specified parameters in the |
|
* RCC_OscInitTypeDef. |
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
|
* contains the configuration information for the RCC Oscillators. |
|
* @note The PLL is not disabled when used as system clock. |
|
* @note The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS) |
|
* @note Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not |
|
* supported by this macro. User should request a transition to LSE Off |
|
* first and then LSE On or LSE Bypass. |
|
* @note Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not |
|
* supported by this macro. User should request a transition to HSE Off |
|
* first and then HSE On or HSE Bypass. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
|
{ |
|
uint32_t tickstart = 0U; |
|
|
|
/* Check the parameters */ |
|
assert_param(RCC_OscInitStruct != NULL); |
|
assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType)); |
|
|
|
/*------------------------------- HSE Configuration ------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState)); |
|
|
|
/* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */ |
|
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) |
|
|| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE))) |
|
{ |
|
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
else |
|
{ |
|
/* Set the new HSE configuration ---------------------------------------*/ |
|
__HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState); |
|
|
|
|
|
/* Check the HSE State */ |
|
if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF) |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSE is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSE is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
/*----------------------------- HSI Configuration --------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState)); |
|
assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue)); |
|
|
|
/* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ |
|
if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) |
|
|| ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2))) |
|
{ |
|
/* When HSI is used as system clock it will not disabled */ |
|
if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
/* Otherwise, just the calibration is allowed */ |
|
else |
|
{ |
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
|
} |
|
} |
|
else |
|
{ |
|
/* Check the HSI State */ |
|
if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF) |
|
{ |
|
/* Enable the Internal High Speed oscillator (HSI). */ |
|
__HAL_RCC_HSI_ENABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSI is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/ |
|
__HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue); |
|
} |
|
else |
|
{ |
|
/* Disable the Internal High Speed oscillator (HSI). */ |
|
__HAL_RCC_HSI_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till HSI is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
/*------------------------------ LSI Configuration -------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState)); |
|
|
|
/* Check the LSI State */ |
|
if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF) |
|
{ |
|
/* Enable the Internal Low Speed oscillator (LSI). */ |
|
__HAL_RCC_LSI_ENABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSI is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
/* To have a fully stabilized clock in the specified range, a software delay of 1ms |
|
should be added.*/ |
|
RCC_Delay(1); |
|
} |
|
else |
|
{ |
|
/* Disable the Internal Low Speed oscillator (LSI). */ |
|
__HAL_RCC_LSI_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSI is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
/*------------------------------ LSE Configuration -------------------------*/ |
|
if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE) |
|
{ |
|
FlagStatus pwrclkchanged = RESET; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState)); |
|
|
|
/* Update LSE configuration in Backup Domain control register */ |
|
/* Requires to enable write access to Backup Domain of necessary */ |
|
if(__HAL_RCC_PWR_IS_CLK_DISABLED()) |
|
{ |
|
__HAL_RCC_PWR_CLK_ENABLE(); |
|
pwrclkchanged = SET; |
|
} |
|
|
|
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
|
{ |
|
/* Enable write access to Backup domain */ |
|
SET_BIT(PWR->CR, PWR_CR_DBP); |
|
|
|
/* Wait for Backup domain Write protection disable */ |
|
tickstart = HAL_GetTick(); |
|
|
|
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP)) |
|
{ |
|
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
/* Set the new LSE configuration -----------------------------------------*/ |
|
__HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState); |
|
/* Check the LSE State */ |
|
if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF) |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSE is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till LSE is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
|
|
/* Require to disable power clock if necessary */ |
|
if(pwrclkchanged == SET) |
|
{ |
|
__HAL_RCC_PWR_CLK_DISABLE(); |
|
} |
|
} |
|
|
|
#if defined(RCC_CR_PLL2ON) |
|
/*-------------------------------- PLL2 Configuration -----------------------*/ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State)); |
|
if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE) |
|
{ |
|
/* This bit can not be cleared if the PLL2 clock is used indirectly as system |
|
clock (i.e. it is used as PLL clock entry that is used as system clock). */ |
|
if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \ |
|
(__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \ |
|
((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
else |
|
{ |
|
if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL)); |
|
assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value)); |
|
|
|
/* Prediv2 can be written only when the PLLI2S is disabled. */ |
|
/* Return an error only if new value is different from the programmed value */ |
|
if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \ |
|
(__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value)) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
|
|
/* Disable the main PLL2. */ |
|
__HAL_RCC_PLL2_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL2 is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Configure the HSE prediv2 factor --------------------------------*/ |
|
__HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value); |
|
|
|
/* Configure the main PLL2 multiplication factors. */ |
|
__HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL); |
|
|
|
/* Enable the main PLL2. */ |
|
__HAL_RCC_PLL2_ENABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL2 is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Set PREDIV1 source to HSE */ |
|
CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC); |
|
|
|
/* Disable the main PLL2. */ |
|
__HAL_RCC_PLL2_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL2 is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
#endif /* RCC_CR_PLL2ON */ |
|
/*-------------------------------- PLL Configuration -----------------------*/ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState)); |
|
if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE) |
|
{ |
|
/* Check if the PLL is used as system clock or not */ |
|
if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
|
{ |
|
if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource)); |
|
assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL)); |
|
|
|
/* Disable the main PLL. */ |
|
__HAL_RCC_PLL_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
|
|
/* Configure the HSE prediv factor --------------------------------*/ |
|
/* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */ |
|
if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE) |
|
{ |
|
/* Check the parameter */ |
|
assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue)); |
|
#if defined(RCC_CFGR2_PREDIV1SRC) |
|
assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source)); |
|
|
|
/* Set PREDIV1 source */ |
|
SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source); |
|
#endif /* RCC_CFGR2_PREDIV1SRC */ |
|
|
|
/* Set PREDIV1 Value */ |
|
__HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue); |
|
} |
|
|
|
/* Configure the main PLL clock source and multiplication factors. */ |
|
__HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource, |
|
RCC_OscInitStruct->PLL.PLLMUL); |
|
/* Enable the main PLL. */ |
|
__HAL_RCC_PLL_ENABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL is ready */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
/* Disable the main PLL. */ |
|
__HAL_RCC_PLL_DISABLE(); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
/* Wait till PLL is disabled */ |
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) != RESET) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @brief Initializes the CPU, AHB and APB buses clocks according to the specified |
|
* parameters in the RCC_ClkInitStruct. |
|
* @param RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that |
|
* contains the configuration information for the RCC peripheral. |
|
* @param FLatency FLASH Latency |
|
* The value of this parameter depend on device used within the same series |
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
|
* and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function |
|
* |
|
* @note The HSI is used (enabled by hardware) as system clock source after |
|
* start-up from Reset, wake-up from STOP and STANDBY mode, or in case |
|
* of failure of the HSE used directly or indirectly as system clock |
|
* (if the Clock Security System CSS is enabled). |
|
* |
|
* @note A switch from one clock source to another occurs only if the target |
|
* clock source is ready (clock stable after start-up delay or PLL locked). |
|
* If a clock source which is not yet ready is selected, the switch will |
|
* occur when the clock source will be ready. |
|
* You can use @ref HAL_RCC_GetClockConfig() function to know which clock is |
|
* currently used as system clock source. |
|
* @retval HAL status |
|
*/ |
|
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t FLatency) |
|
{ |
|
uint32_t tickstart = 0U; |
|
|
|
/* Check the parameters */ |
|
assert_param(RCC_ClkInitStruct != NULL); |
|
assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType)); |
|
assert_param(IS_FLASH_LATENCY(FLatency)); |
|
|
|
/* To correctly read data from FLASH memory, the number of wait states (LATENCY) |
|
must be correctly programmed according to the frequency of the CPU clock |
|
(HCLK) of the device. */ |
|
|
|
#if defined(FLASH_ACR_LATENCY) |
|
/* Increasing the number of wait states because of higher CPU frequency */ |
|
if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY)) |
|
{ |
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
|
__HAL_FLASH_SET_LATENCY(FLatency); |
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash |
|
memory by reading the FLASH_ACR register */ |
|
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
|
|
#endif /* FLASH_ACR_LATENCY */ |
|
/*-------------------------- HCLK Configuration --------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK) |
|
{ |
|
assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider)); |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider); |
|
} |
|
|
|
/*------------------------- SYSCLK Configuration ---------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK) |
|
{ |
|
assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource)); |
|
|
|
/* HSE is selected as System Clock Source */ |
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
|
{ |
|
/* Check the HSE ready flag */ |
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
/* PLL is selected as System Clock Source */ |
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
|
{ |
|
/* Check the PLL ready flag */ |
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
/* HSI is selected as System Clock Source */ |
|
else |
|
{ |
|
/* Check the HSI ready flag */ |
|
if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
__HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource); |
|
|
|
/* Get Start Tick */ |
|
tickstart = HAL_GetTick(); |
|
|
|
if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE) |
|
{ |
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK) |
|
{ |
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI) |
|
{ |
|
if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE) |
|
{ |
|
return HAL_TIMEOUT; |
|
} |
|
} |
|
} |
|
} |
|
#if defined(FLASH_ACR_LATENCY) |
|
/* Decreasing the number of wait states because of lower CPU frequency */ |
|
if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY)) |
|
{ |
|
/* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */ |
|
__HAL_FLASH_SET_LATENCY(FLatency); |
|
|
|
/* Check that the new number of wait states is taken into account to access the Flash |
|
memory by reading the FLASH_ACR register */ |
|
if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency) |
|
{ |
|
return HAL_ERROR; |
|
} |
|
} |
|
#endif /* FLASH_ACR_LATENCY */ |
|
|
|
/*-------------------------- PCLK1 Configuration ---------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1) |
|
{ |
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider)); |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider); |
|
} |
|
|
|
/*-------------------------- PCLK2 Configuration ---------------------------*/ |
|
if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2) |
|
{ |
|
assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider)); |
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3)); |
|
} |
|
|
|
/* Update the SystemCoreClock global variable */ |
|
SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos]; |
|
|
|
/* Configure the source of time base considering new system clocks settings*/ |
|
HAL_InitTick (TICK_INT_PRIORITY); |
|
|
|
return HAL_OK; |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions |
|
* @brief RCC clocks control functions |
|
* |
|
@verbatim |
|
=============================================================================== |
|
##### Peripheral Control functions ##### |
|
=============================================================================== |
|
[..] |
|
This subsection provides a set of functions allowing to control the RCC Clocks |
|
frequencies. |
|
|
|
@endverbatim |
|
* @{ |
|
*/ |
|
|
|
/** |
|
* @brief Selects the clock source to output on MCO pin. |
|
* @note MCO pin should be configured in alternate function mode. |
|
* @param RCC_MCOx specifies the output direction for the clock source. |
|
* This parameter can be one of the following values: |
|
* @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8). |
|
* @param RCC_MCOSource specifies the clock source to output. |
|
* This parameter can be one of the following values: |
|
* @arg @ref RCC_MCO1SOURCE_NOCLOCK No clock selected as MCO clock |
|
* @arg @ref RCC_MCO1SOURCE_SYSCLK System clock selected as MCO clock |
|
* @arg @ref RCC_MCO1SOURCE_HSI HSI selected as MCO clock |
|
* @arg @ref RCC_MCO1SOURCE_HSE HSE selected as MCO clock |
|
@if STM32F105xC |
|
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source |
|
@endif |
|
@if STM32F107xC |
|
* @arg @ref RCC_MCO1SOURCE_PLLCLK PLL clock divided by 2 selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_PLL2CLK PLL2 clock selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1 external 3-25 MHz oscillator clock selected as MCO source |
|
* @arg @ref RCC_MCO1SOURCE_PLL3CLK PLL3 clock selected as MCO source |
|
@endif |
|
* @param RCC_MCODiv specifies the MCO DIV. |
|
* This parameter can be one of the following values: |
|
* @arg @ref RCC_MCODIV_1 no division applied to MCO clock |
|
* @retval None |
|
*/ |
|
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv) |
|
{ |
|
GPIO_InitTypeDef gpio = {0U}; |
|
|
|
/* Check the parameters */ |
|
assert_param(IS_RCC_MCO(RCC_MCOx)); |
|
assert_param(IS_RCC_MCODIV(RCC_MCODiv)); |
|
assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource)); |
|
|
|
/* Prevent unused argument(s) compilation warning */ |
|
UNUSED(RCC_MCOx); |
|
UNUSED(RCC_MCODiv); |
|
|
|
/* Configure the MCO1 pin in alternate function mode */ |
|
gpio.Mode = GPIO_MODE_AF_PP; |
|
gpio.Speed = GPIO_SPEED_FREQ_HIGH; |
|
gpio.Pull = GPIO_NOPULL; |
|
gpio.Pin = MCO1_PIN; |
|
|
|
/* MCO1 Clock Enable */ |
|
MCO1_CLK_ENABLE(); |
|
|
|
HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio); |
|
|
|
/* Configure the MCO clock source */ |
|
__HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv); |
|
} |
|
|
|
/** |
|
* @brief Enables the Clock Security System. |
|
* @note If a failure is detected on the HSE oscillator clock, this oscillator |
|
* is automatically disabled and an interrupt is generated to inform the |
|
* software about the failure (Clock Security System Interrupt, CSSI), |
|
* allowing the MCU to perform rescue operations. The CSSI is linked to |
|
* the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_EnableCSS(void) |
|
{ |
|
*(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE; |
|
} |
|
|
|
/** |
|
* @brief Disables the Clock Security System. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_DisableCSS(void) |
|
{ |
|
*(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE; |
|
} |
|
|
|
/** |
|
* @brief Returns the SYSCLK frequency |
|
* @note The system frequency computed by this function is not the real |
|
* frequency in the chip. It is calculated based on the predefined |
|
* constant and the selected clock source: |
|
* @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(*) |
|
* @note If SYSCLK source is HSE, function returns a value based on HSE_VALUE |
|
* divided by PREDIV factor(**) |
|
* @note If SYSCLK source is PLL, function returns a value based on HSE_VALUE |
|
* divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor. |
|
* @note (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value |
|
* 8 MHz) but the real value may vary depending on the variations |
|
* in voltage and temperature. |
|
* @note (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value |
|
* 8 MHz), user has to ensure that HSE_VALUE is same as the real |
|
* frequency of the crystal used. Otherwise, this function may |
|
* have wrong result. |
|
* |
|
* @note The result of this function could be not correct when using fractional |
|
* value for HSE crystal. |
|
* |
|
* @note This function can be used by the user application to compute the |
|
* baud-rate for the communication peripherals or configure other parameters. |
|
* |
|
* @note Each time SYSCLK changes, this function must be called to update the |
|
* right SYSCLK value. Otherwise, any configuration based on this function will be incorrect. |
|
* |
|
* @retval SYSCLK frequency |
|
*/ |
|
uint32_t HAL_RCC_GetSysClockFreq(void) |
|
{ |
|
#if defined(RCC_CFGR2_PREDIV1SRC) |
|
const uint8_t aPLLMULFactorTable[14] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 13}; |
|
const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; |
|
#else |
|
const uint8_t aPLLMULFactorTable[16] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16}; |
|
#if defined(RCC_CFGR2_PREDIV1) |
|
const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; |
|
#else |
|
const uint8_t aPredivFactorTable[2] = {1, 2}; |
|
#endif /*RCC_CFGR2_PREDIV1*/ |
|
|
|
#endif |
|
uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U; |
|
uint32_t sysclockfreq = 0U; |
|
#if defined(RCC_CFGR2_PREDIV1SRC) |
|
uint32_t prediv2 = 0U, pll2mul = 0U; |
|
#endif /*RCC_CFGR2_PREDIV1SRC*/ |
|
|
|
tmpreg = RCC->CFGR; |
|
|
|
/* Get SYSCLK source -------------------------------------------------------*/ |
|
switch (tmpreg & RCC_CFGR_SWS) |
|
{ |
|
case RCC_SYSCLKSOURCE_STATUS_HSE: /* HSE used as system clock */ |
|
{ |
|
sysclockfreq = HSE_VALUE; |
|
break; |
|
} |
|
case RCC_SYSCLKSOURCE_STATUS_PLLCLK: /* PLL used as system clock */ |
|
{ |
|
pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos]; |
|
if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2) |
|
{ |
|
#if defined(RCC_CFGR2_PREDIV1) |
|
prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> RCC_CFGR2_PREDIV1_Pos]; |
|
#else |
|
prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos]; |
|
#endif /*RCC_CFGR2_PREDIV1*/ |
|
#if defined(RCC_CFGR2_PREDIV1SRC) |
|
|
|
if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC)) |
|
{ |
|
/* PLL2 selected as Prediv1 source */ |
|
/* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */ |
|
prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1; |
|
pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> RCC_CFGR2_PLL2MUL_Pos) + 2; |
|
pllclk = (uint32_t)(((uint64_t)HSE_VALUE * (uint64_t)pll2mul * (uint64_t)pllmul) / ((uint64_t)prediv2 * (uint64_t)prediv)); |
|
} |
|
else |
|
{ |
|
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */ |
|
pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv); |
|
} |
|
|
|
/* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */ |
|
/* In this case need to divide pllclk by 2 */ |
|
if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> RCC_CFGR_PLLMULL_Pos]) |
|
{ |
|
pllclk = pllclk / 2; |
|
} |
|
#else |
|
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */ |
|
pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv); |
|
#endif /*RCC_CFGR2_PREDIV1SRC*/ |
|
} |
|
else |
|
{ |
|
/* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */ |
|
pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul); |
|
} |
|
sysclockfreq = pllclk; |
|
break; |
|
} |
|
case RCC_SYSCLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ |
|
default: /* HSI used as system clock */ |
|
{ |
|
sysclockfreq = HSI_VALUE; |
|
break; |
|
} |
|
} |
|
return sysclockfreq; |
|
} |
|
|
|
/** |
|
* @brief Returns the HCLK frequency |
|
* @note Each time HCLK changes, this function must be called to update the |
|
* right HCLK value. Otherwise, any configuration based on this function will be incorrect. |
|
* |
|
* @note The SystemCoreClock CMSIS variable is used to store System Clock Frequency |
|
* and updated within this function |
|
* @retval HCLK frequency |
|
*/ |
|
uint32_t HAL_RCC_GetHCLKFreq(void) |
|
{ |
|
return SystemCoreClock; |
|
} |
|
|
|
/** |
|
* @brief Returns the PCLK1 frequency |
|
* @note Each time PCLK1 changes, this function must be called to update the |
|
* right PCLK1 value. Otherwise, any configuration based on this function will be incorrect. |
|
* @retval PCLK1 frequency |
|
*/ |
|
uint32_t HAL_RCC_GetPCLK1Freq(void) |
|
{ |
|
/* Get HCLK source and Compute PCLK1 frequency ---------------------------*/ |
|
return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos]); |
|
} |
|
|
|
/** |
|
* @brief Returns the PCLK2 frequency |
|
* @note Each time PCLK2 changes, this function must be called to update the |
|
* right PCLK2 value. Otherwise, any configuration based on this function will be incorrect. |
|
* @retval PCLK2 frequency |
|
*/ |
|
uint32_t HAL_RCC_GetPCLK2Freq(void) |
|
{ |
|
/* Get HCLK source and Compute PCLK2 frequency ---------------------------*/ |
|
return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos]); |
|
} |
|
|
|
/** |
|
* @brief Configures the RCC_OscInitStruct according to the internal |
|
* RCC configuration registers. |
|
* @param RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that |
|
* will be configured. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef *RCC_OscInitStruct) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(RCC_OscInitStruct != NULL); |
|
|
|
/* Set all possible values for the Oscillator type parameter ---------------*/ |
|
RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI \ |
|
| RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI; |
|
|
|
#if defined(RCC_CFGR2_PREDIV1SRC) |
|
/* Get the Prediv1 source --------------------------------------------------*/ |
|
RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC); |
|
#endif /* RCC_CFGR2_PREDIV1SRC */ |
|
|
|
/* Get the HSE configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP) |
|
{ |
|
RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS; |
|
} |
|
else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON) |
|
{ |
|
RCC_OscInitStruct->HSEState = RCC_HSE_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->HSEState = RCC_HSE_OFF; |
|
} |
|
RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV(); |
|
|
|
/* Get the HSI configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION) |
|
{ |
|
RCC_OscInitStruct->HSIState = RCC_HSI_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->HSIState = RCC_HSI_OFF; |
|
} |
|
|
|
RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos); |
|
|
|
/* Get the LSE configuration -----------------------------------------------*/ |
|
if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP) |
|
{ |
|
RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS; |
|
} |
|
else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON) |
|
{ |
|
RCC_OscInitStruct->LSEState = RCC_LSE_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->LSEState = RCC_LSE_OFF; |
|
} |
|
|
|
/* Get the LSI configuration -----------------------------------------------*/ |
|
if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION) |
|
{ |
|
RCC_OscInitStruct->LSIState = RCC_LSI_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->LSIState = RCC_LSI_OFF; |
|
} |
|
|
|
|
|
/* Get the PLL configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON) |
|
{ |
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF; |
|
} |
|
RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC); |
|
RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL); |
|
#if defined(RCC_CR_PLL2ON) |
|
/* Get the PLL2 configuration -----------------------------------------------*/ |
|
if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON) |
|
{ |
|
RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON; |
|
} |
|
else |
|
{ |
|
RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF; |
|
} |
|
RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2(); |
|
RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL); |
|
#endif /* RCC_CR_PLL2ON */ |
|
} |
|
|
|
/** |
|
* @brief Get the RCC_ClkInitStruct according to the internal |
|
* RCC configuration registers. |
|
* @param RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that |
|
* contains the current clock configuration. |
|
* @param pFLatency Pointer on the Flash Latency. |
|
* @retval None |
|
*/ |
|
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef *RCC_ClkInitStruct, uint32_t *pFLatency) |
|
{ |
|
/* Check the parameters */ |
|
assert_param(RCC_ClkInitStruct != NULL); |
|
assert_param(pFLatency != NULL); |
|
|
|
/* Set all possible values for the Clock type parameter --------------------*/ |
|
RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; |
|
|
|
/* Get the SYSCLK configuration --------------------------------------------*/ |
|
RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW); |
|
|
|
/* Get the HCLK configuration ----------------------------------------------*/ |
|
RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); |
|
|
|
/* Get the APB1 configuration ----------------------------------------------*/ |
|
RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1); |
|
|
|
/* Get the APB2 configuration ----------------------------------------------*/ |
|
RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3); |
|
|
|
#if defined(FLASH_ACR_LATENCY) |
|
/* Get the Flash Wait State (Latency) configuration ------------------------*/ |
|
*pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); |
|
#else |
|
/* For VALUE lines devices, only LATENCY_0 can be set*/ |
|
*pFLatency = (uint32_t)FLASH_LATENCY_0; |
|
#endif |
|
} |
|
|
|
/** |
|
* @brief This function handles the RCC CSS interrupt request. |
|
* @note This API should be called under the NMI_Handler(). |
|
* @retval None |
|
*/ |
|
void HAL_RCC_NMI_IRQHandler(void) |
|
{ |
|
/* Check RCC CSSF flag */ |
|
if(__HAL_RCC_GET_IT(RCC_IT_CSS)) |
|
{ |
|
/* RCC Clock Security System interrupt user callback */ |
|
HAL_RCC_CSSCallback(); |
|
|
|
/* Clear RCC CSS pending bit */ |
|
__HAL_RCC_CLEAR_IT(RCC_IT_CSS); |
|
} |
|
} |
|
|
|
/** |
|
* @brief This function provides delay (in milliseconds) based on CPU cycles method. |
|
* @param mdelay: specifies the delay time length, in milliseconds. |
|
* @retval None |
|
*/ |
|
static void RCC_Delay(uint32_t mdelay) |
|
{ |
|
__IO uint32_t Delay = mdelay * (SystemCoreClock / 8U / 1000U); |
|
do |
|
{ |
|
__NOP(); |
|
} |
|
while (Delay --); |
|
} |
|
|
|
/** |
|
* @brief RCC Clock Security System interrupt callback |
|
* @retval none |
|
*/ |
|
__weak void HAL_RCC_CSSCallback(void) |
|
{ |
|
/* NOTE : This function Should not be modified, when the callback is needed, |
|
the HAL_RCC_CSSCallback could be implemented in the user file |
|
*/ |
|
} |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
#endif /* HAL_RCC_MODULE_ENABLED */ |
|
/** |
|
* @} |
|
*/ |
|
|
|
/** |
|
* @} |
|
*/ |
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
|
|