@ -25,31 +25,23 @@
/* Private Global Variables */
/* Private Global Variables */
/* Function Prototypes */
/* Function Prototypes */
static void em7180_float_to_bytes ( float param_val , uint8_t * buf ) ;
static void em7180_passthrough ( em7180_t * em7180 ) ;
static void m24512dfm_write_byte ( uint8_t device_address , uint8_t data_address1 ,
static float uint32_reg_to_float ( uint8_t * buf ) ;
uint8_t data_address2 , uint8_t data ) ;
static void float_to_bytes ( float param_val , uint8_t * buf ) ;
static void m24512dfm_write ( uint8_t device_address , uint8_t data_address1 ,
uint8_t data_address2 , uint8_t count , uint8_t * dest ) ;
static uint8_t m24512dfm_read_byte ( uint8_t device_address ,
uint8_t data_address1 , uint8_t data_address2 ) ;
static void m24512dfm_read ( uint8_t device_address , uint8_t data_address1 ,
uint8_t data_address2 , uint8_t count , uint8_t * dest ) ;
static uint8_t em7180_read_byte ( uint8_t address , uint8_t subAddress ) ;
static void em7180_read ( uint8_t address , uint8_t subAddress , uint8_t count ,
uint8_t * dest ) ;
/* Function Definitions */
/* Function Definitions */
void em7180_init ( em7180_t * em7180 , lsm6dsm_t * lsm6dsm , I2C_HandleTypeDef * hi2c1 ,
void em7180_init ( em7180_t * em7180 , I2C_HandleTypeDef * hi2c , lsm6dsm_t * lsm6dsm ,
uint16_t acc_fs , uint16_t gyro_fs , uint16_t mag_fs ,
lis2mdl_t * lis2mdl , lps22hb_t * lps22hb , uint16_t acc_fs ,
uint8_t q_rate_div , uint8_t mag_rate , uint8_t acc_rate ,
uint16_t gyro_fs , uint16_t mag_fs , uint8_t q_rate_div ,
uint8_t gyro_rate , uint8_t baro_rate )
uint8_t mag_rate , uint8_t acc_rate , uint8_t gyro_rate ,
uint8_t baro_rate )
{
{
if ( ! em7180 )
return_if_fail ( em7180 ) ;
{
return ;
}
em7180 - > hi2c = hi2c ;
em7180 - > lsm6dsm = lsm6dsm ;
em7180 - > lsm6dsm = lsm6dsm ;
em7180 - > lis2mdl = lis2mdl ;
em7180 - > lps22hb = lps22hb ;
em7180 - > acc_fs = acc_fs ;
em7180 - > acc_fs = acc_fs ;
em7180 - > gyro_fs = gyro_fs ;
em7180 - > gyro_fs = gyro_fs ;
em7180 - > mag_fs = mag_fs ;
em7180 - > mag_fs = mag_fs ;
@ -59,13 +51,27 @@ void em7180_init(em7180_t *em7180, lsm6dsm_t *lsm6dsm, I2C_HandleTypeDef *hi2c1,
em7180 - > gyro_rate = gyro_rate ;
em7180 - > gyro_rate = gyro_rate ;
em7180 - > baro_rate = baro_rate ;
em7180 - > baro_rate = baro_rate ;
/* configure the EM7180 */
em7180_config ( em7180 ) ;
em7180_config ( em7180 ) ;
/* enter passthrough mode */
em7180_passthrough ( em7180 ) ;
/* and configure the devices on the slave bus */
if ( em7180 - > lsm6dsm )
{
lsm6dsm_config ( em7180 - > lsm6dsm , em7180 - > hi2c ) ;
}
if ( em7180 - > lis2mdl )
{
lis2mdl_config ( em7180 - > lis2mdl , em7180 - > hi2c ) ;
}
if ( em7180 - > lps22hb )
{
lps22hb_config ( em7180 - > lps22hb , em7180 - > hi2c ) ;
}
}
}
void em7180_config ( em7180_t * em7180 )
void em7180_config ( em7180_t * em7180 )
{
{
uint8_t param [ 4 ] ;
uint8_t param_xfer ;
uint8_t runStatus ;
uint8_t runStatus ;
uint8_t algoStatus ;
uint8_t algoStatus ;
uint8_t passthruStatus ;
uint8_t passthruStatus ;
@ -73,50 +79,54 @@ void em7180_config(em7180_t *em7180)
uint8_t sensorStatus ;
uint8_t sensorStatus ;
// Enter EM7180 initialized state
// Enter EM7180 initialized state
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_HostControl , 0x00 ) ; // set SENtral in initialized state to configure registers
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_HostControl , 0x00 ) ; // set SENtral in initialized state to configure registers
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_PassThruControl , 0x00 ) ; // make sure pass through mode is off
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_PassThruControl , 0x00 ) ; // make sure pass through mode is off
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_HostControl , 0x01 ) ; // Force initialize
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_HostControl , 0x01 ) ; // Force initialize
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_HostControl , 0x00 ) ; // set SENtral in initialized state to configure registers
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_HostControl , 0x00 ) ; // set SENtral in initialized state to configure registers
/* Legacy MPU6250 stuff, it seems
/* Legacy MPU6250 stuff, it seems
// Setup LPF bandwidth (BEFORE setting ODR's)
// Setup LPF bandwidth (BEFORE setting ODR's)
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ACC_LPF_BW , accBW ) ; // accBW = 3 = 41Hz
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ACC_LPF_BW , accBW ) ; // accBW = 3 = 41Hz
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_GYRO_LPF_BW , gyroBW ) ; // gyroBW = 3 = 41Hz */
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_GYRO_LPF_BW , gyroBW ) ; // gyroBW = 3 = 41Hz */
// Set accel/gyro/mag desired ODR rates
// Set accel/gyro/mag desired ODR rates
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_QRateDivisor , em7180 - > q_rate_div ) ; // quat rate = gyroRt/(1 QRTDiv)
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_QRateDivisor ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_MagRate , em7180 - > mag_rate ) ; // 0x64 = 100 Hz
em7180 - > q_rate_div ) ; // quat rate = gyroRt/(1 QRTDiv)
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AccelRate , em7180 - > acc_rate ) ; // 200/10 Hz, 0x14 = 200 Hz
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_MagRate ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_GyroRate , em7180 - > gyro_rate ) ; // 200/10 Hz, 0x14 = 200 Hz
em7180 - > mag_rate ) ; // 0x64 = 100 Hz
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_BaroRate ,
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AccelRate ,
0x80 | em7180 - > baro_rate ) ; // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz
em7180 - > acc_rate ) ; // 200/10 Hz, 0x14 = 200 Hz
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_GyroRate ,
em7180 - > gyro_rate ) ; // 200/10 Hz, 0x14 = 200 Hz
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_BaroRate ,
0x80 | em7180 - > baro_rate ) ; // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz
// Configure operating mode
// Configure operating mode
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // read scale sensor data
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // read scale sensor data
// Enable interrupt to host upon certain events
// Enable interrupt to host upon certain events
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10),
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10),
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01)
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_EnableEvents , 0x07 ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_EnableEvents , 0x07 ) ;
// Enable EM7180 run mode
// Enable EM7180 run mode
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_HostControl , 0x01 ) ; // set SENtral in normal run mode
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_HostControl , 0x01 ) ; // set SENtral in normal run mode
HAL_Delay ( 100 ) ;
HAL_Delay ( 100 ) ;
// EM7180 parameter adjustments
// EM7180 parameter adjustments
/* Serial.println("Beginning Parameter Adjustments"); */
/* Serial.println("Beginning Parameter Adjustments"); */
// Disable stillness mode for balancing robot application
// Disable stillness mode for balancing robot application
em7180_set_integer_param ( 0x49 , 0x00 ) ;
em7180_set_integer_param ( em7180 , 0x49 , 0x00 ) ;
// Write desired sensor full scale ranges to the EM7180
// Write desired sensor full scale ranges to the EM7180
em7180_mag_acc_set_fs ( em7180 - > mag_fs , em7180 - > acc_fs ) ; // 1000 uT == 0x3E8, 8 g == 0x08
em7180_mag_acc_set_fs ( em7180 , em7180 - > mag_fs , em7180 - > acc_fs ) ; // 1000 uT == 0x3E8, 8 g == 0x08
em7180_gyro_set_fs ( em7180 - > gyro_fs ) ; // 2000 dps == 0x7D0
em7180_gyro_set_fs ( em7180 , em7180 - > gyro_fs ) ; // 2000 dps == 0x7D0
// Read EM7180 status
// Read EM7180 status
runStatus = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_RunStatus ) ;
runStatus = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_RunStatus ) ;
if ( runStatus & 0x01 )
if ( runStatus & 0x01 )
{
{
/* Serial.println(" EM7180 run status = normal mode"); */
/* Serial.println(" EM7180 run status = normal mode"); */
}
}
algoStatus = lsm6dsm_read_byte ( EM7180_ADDRESS ,
algoStatus = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_AlgorithmStatus ) ;
EM7180_AlgorithmStatus ) ;
if ( algoStatus & 0x01 )
if ( algoStatus & 0x01 )
{
{
@ -142,13 +152,14 @@ void em7180_config(em7180_t *em7180)
{
{
/* Serial.println(" EM7180 unreliable sensor data"); */
/* Serial.println(" EM7180 unreliable sensor data"); */
}
}
passthruStatus = lsm6dsm_read_byte ( EM7180_ADDRESS ,
passthruStatus = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_PassThruStatus ) ;
EM7180_PassThruStatus ) ;
if ( passthruStatus & 0x01 )
if ( passthruStatus & 0x01 )
{
{
/* Serial.print(" EM7180 in passthru mode!"); */
/* Serial.print(" EM7180 in passthru mode!"); */
}
}
eventStatus = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_EventStatus ) ;
eventStatus = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_EventStatus ) ;
if ( eventStatus & 0x01 )
if ( eventStatus & 0x01 )
{
{
/* Serial.println(" EM7180 CPU reset"); */
/* Serial.println(" EM7180 CPU reset"); */
@ -177,7 +188,8 @@ void em7180_config(em7180_t *em7180)
HAL_Delay ( 1000 ) ; // give some time to read the screen
HAL_Delay ( 1000 ) ; // give some time to read the screen
// Check sensor status
// Check sensor status
sensorStatus = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SensorStatus ) ;
sensorStatus = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_SensorStatus ) ;
/* Serial.print(" EM7180 sensor status = "); */
/* Serial.print(" EM7180 sensor status = "); */
/* Serial.println(sensorStatus); */
/* Serial.println(sensorStatus); */
if ( sensorStatus & 0x01 )
if ( sensorStatus & 0x01 )
@ -206,47 +218,49 @@ void em7180_config(em7180_t *em7180)
}
}
/* Serial.print("Actual MagRate = "); */
/* Serial.print("Actual MagRate = "); */
/* Serial.print(lsm6dsm_read_byte( EM7180_ADDRESS, EM7180_ActualMagRate)); */
/* Serial.print(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualMagRate)); */
/* Serial.println(" Hz"); */
/* Serial.println(" Hz"); */
/* Serial.print("Actual AccelRate = "); */
/* Serial.print("Actual AccelRate = "); */
/* Serial.print(10 * lsm6dsm_read_byte( EM7180_ADDRESS, EM7180_ActualAccelRate)); */
/* Serial.print(10 * i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualAccelRate)); */
/* Serial.println(" Hz"); */
/* Serial.println(" Hz"); */
/* Serial.print("Actual GyroRate = "); */
/* Serial.print("Actual GyroRate = "); */
/* Serial.print(10 * lsm6dsm_read_byte( EM7180_ADDRESS, EM7180_ActualGyroRate)); */
/* Serial.print(10 * i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualGyroRate)); */
/* Serial.println(" Hz"); */
/* Serial.println(" Hz"); */
/* Serial.print("Actual BaroRate = "); */
/* Serial.print("Actual BaroRate = "); */
/* Serial.print(lsm6dsm_read_byte( EM7180_ADDRESS, EM7180_ActualBaroRate)); */
/* Serial.print(i2c_read_byte(em7180->hi2c, EM7180_ADDRESS, EM7180_ActualBaroRate)); */
/* Serial.println(" Hz"); */
/* Serial.println(" Hz"); */
}
}
void em7180_chip_id_get ( )
# if(0)
void em7180_chip_id_get ( em7180_t * em7180 )
{
{
// Read SENtral device information
// Read SENtral device information
uint16_t ROM1 = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ROMVersion1 ) ;
uint16_t ROM1 = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ROMVersion1 ) ;
uint16_t ROM2 = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ROMVersion2 ) ;
uint16_t ROM2 = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ROMVersion2 ) ;
/* Serial.print("EM7180 ROM Version: 0x"); */
/* Serial.print("EM7180 ROM Version: 0x"); */
/* Serial.print(ROM1, HEX); */
/* Serial.print(ROM1, HEX); */
/* Serial.println(ROM2, HEX); */
/* Serial.println(ROM2, HEX); */
/* Serial.println("Should be: 0xE609"); */
/* Serial.println("Should be: 0xE609"); */
uint16_t RAM1 = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_RAMVersion1 ) ;
uint16_t RAM1 = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_RAMVersion1 ) ;
uint16_t RAM2 = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_RAMVersion2 ) ;
uint16_t RAM2 = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_RAMVersion2 ) ;
/* Serial.print("EM7180 RAM Version: 0x"); */
/* Serial.print("EM7180 RAM Version: 0x"); */
/* Serial.print(RAM1); */
/* Serial.print(RAM1); */
/* Serial.println(RAM2); */
/* Serial.println(RAM2); */
uint8_t PID = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ProductID ) ;
uint8_t PID = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ProductID ) ;
/* Serial.print("EM7180 ProductID: 0x"); */
/* Serial.print("EM7180 ProductID: 0x"); */
/* Serial.print(PID, HEX); */
/* Serial.print(PID, HEX); */
/* Serial.println(" Should be: 0x80"); */
/* Serial.println(" Should be: 0x80"); */
uint8_t RID = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_RevisionID ) ;
uint8_t RID = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_RevisionID ) ;
/* Serial.print("EM7180 RevisionID: 0x"); */
/* Serial.print("EM7180 RevisionID: 0x"); */
/* Serial.print(RID, HEX); */
/* Serial.print(RID, HEX); */
/* Serial.println(" Should be: 0x02"); */
/* Serial.println(" Should be: 0x02"); */
}
}
# endif
void em7180_load_fw_from_eeprom ( )
void em7180_load_fw_from_eeprom ( em7180_t * em7180 )
{
{
// Check which sensors can be detected by the EM7180
// Check which sensors can be detected by the EM7180
uint8_t featureflag = lsm6dsm_read_byte ( EM7180_ADDRESS ,
uint8_t featureflag = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_FeatureFlags ) ;
EM7180_FeatureFlags ) ;
if ( featureflag & 0x01 )
if ( featureflag & 0x01 )
{
{
@ -276,52 +290,55 @@ void em7180_load_fw_from_eeprom()
HAL_Delay ( 1000 ) ; // give some time to read the screen
HAL_Delay ( 1000 ) ; // give some time to read the screen
// Check SENtral status, make sure EEPROM upload of firmware was accomplished
// Check SENtral status, make sure EEPROM upload of firmware was accomplished
uint8_t STAT = ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus )
uint8_t STAT = ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
& 0x01 ) ;
EM7180_SentralStatus )
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x01 )
& 0x01 ) ;
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x01 )
{
{
/* Serial.println("EEPROM detected on the sensor bus!"); */
/* Serial.println("EEPROM detected on the sensor bus!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x02 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x02 )
{
{
/* Serial.println("EEPROM uploaded config file!"); */
/* Serial.println("EEPROM uploaded config file!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x04 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x04 )
{
{
/* Serial.println("EEPROM CRC incorrect!"); */
/* Serial.println("EEPROM CRC incorrect!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x08 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x08 )
{
{
/* Serial.println("EM7180 in initialized state!"); */
/* Serial.println("EM7180 in initialized state!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x10 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x10 )
{
{
/* Serial.println("No EEPROM detected!"); */
/* Serial.println("No EEPROM detected!"); */
}
}
int count = 0 ;
int count = 0 ;
while ( ! STAT )
while ( ! STAT )
{
{
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ResetRequest , 0x01 ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ResetRequest , 0x01 ) ;
HAL_Delay ( 500 ) ;
HAL_Delay ( 500 ) ;
count + + ;
count + + ;
STAT = ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x01 ) ;
STAT = ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x01 )
EM7180_SentralStatus )
& 0x01 ) ;
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x01 )
{
{
/* Serial.println("EEPROM detected on the sensor bus!"); */
/* Serial.println("EEPROM detected on the sensor bus!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x02 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x02 )
{
{
/* Serial.println("EEPROM uploaded config file!"); */
/* Serial.println("EEPROM uploaded config file!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x04 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x04 )
{
{
/* Serial.println("EEPROM CRC incorrect!"); */
/* Serial.println("EEPROM CRC incorrect!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x08 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x08 )
{
{
/* Serial.println("EM7180 in initialized state!"); */
/* Serial.println("EM7180 in initialized state!"); */
}
}
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x10 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus ) & 0x10 )
{
{
/* Serial.println("No EEPROM detected!"); */
/* Serial.println("No EEPROM detected!"); */
}
}
@ -331,117 +348,85 @@ void em7180_load_fw_from_eeprom()
}
}
}
}
if ( ! ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_SentralStatus ) & 0x04 ) )
if ( ! ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_SentralStatus )
& 0x04 ) )
{
{
/* Serial.println("EEPROM upload successful!"); */
/* Serial.println("EEPROM upload successful!"); */
}
}
}
}
uint8_t em7180_status ( )
uint8_t em7180_status ( em7180_t * em7180 )
{
{
// Check event status register, way to check data ready by polling rather than interrupt
// Check event status register, way to check data ready by polling rather than interrupt
uint8_t c = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_EventStatus ) ; // reading clears the register and interrupt
uint8_t c = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_EventStatus ) ; // reading clears the register and interrupt
return c ;
}
uint8_t em7180_errors ( )
{
uint8_t c = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ErrorRegister ) ; // check error register
return c ;
return c ;
}
}
float em7180_uint32_reg_to_float ( uint8_t * buf )
uint8_t em7180_errors ( em7180_t * em7180 )
{
union
{
uint32_t ui32 ;
float f ;
} u ;
u . ui32 = ( ( ( uint32_t ) buf [ 0 ] ) + ( ( ( uint32_t ) buf [ 1 ] ) < < 8 )
+ ( ( ( uint32_t ) buf [ 2 ] ) < < 16 ) + ( ( ( uint32_t ) buf [ 3 ] ) < < 24 ) ) ;
return u . f ;
}
float em7180_int32_reg_to_float ( uint8_t * buf )
{
{
union
uint8_t c = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
{
EM7180_ErrorRegister ) ; // check error register
int32_t i32 ;
float f ;
} u ;
u . i32 = ( ( ( int32_t ) buf [ 0 ] ) + ( ( ( int32_t ) buf [ 1 ] ) < < 8 )
+ ( ( ( int32_t ) buf [ 2 ] ) < < 16 ) + ( ( ( int32_t ) buf [ 3 ] ) < < 24 ) ) ;
return u . f ;
}
static void em7180_float_to_bytes ( float param_val , uint8_t * buf )
return c ;
{
union
{
float f ;
uint8_t u8 [ sizeof ( float ) ] ;
} u ;
u . f = param_val ;
for ( uint8_t i = 0 ; i < sizeof ( float ) ; i + + )
{
buf [ i ] = u . u8 [ i ] ;
}
// Convert to LITTLE ENDIAN
/* FIXME: What the hell? */
for ( uint8_t i = 0 ; i < sizeof ( float ) ; i + + )
{
buf [ i ] = buf [ ( sizeof ( float ) - 1 ) - i ] ;
}
}
}
void em7180_gyro_set_fs ( uint16_t gyro_fs )
void em7180_gyro_set_fs ( em7180_t * em7180 , uint16_t gyro_fs )
{
{
uint8_t bytes [ 4 ] , STAT ;
uint8_t bytes [ 4 ] , STAT ;
bytes [ 0 ] = gyro_fs & ( 0xFF ) ;
bytes [ 0 ] = gyro_fs & ( 0xFF ) ;
bytes [ 1 ] = ( gyro_fs > > 8 ) & ( 0xFF ) ;
bytes [ 1 ] = ( gyro_fs > > 8 ) & ( 0xFF ) ;
bytes [ 2 ] = 0x00 ;
bytes [ 2 ] = 0x00 ;
bytes [ 3 ] = 0x00 ;
bytes [ 3 ] = 0x00 ;
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte0 , bytes [ 0 ] ) ; // Gyro LSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte0 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte1 , bytes [ 1 ] ) ; // Gyro MSB
bytes [ 0 ] ) ; // Gyro LSB
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte2 , bytes [ 2 ] ) ; // Unused
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte1 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte3 , bytes [ 3 ] ) ; // Unused
bytes [ 1 ] ) ; // Gyro MSB
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , 0xCB ) ; // Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a parameter write process
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte2 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
bytes [ 2 ] ) ; // Unused
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte3 ,
bytes [ 3 ] ) ; // Unused
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , 0xCB ) ; // Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a parameter write process
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
while ( ! ( STAT = = 0xCB ) )
while ( ! ( STAT = = 0xCB ) )
{
{
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ;
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_ParamAcknowledge ) ;
}
}
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
}
}
void em7180_mag_acc_set_fs ( uint16_t mag_fs , uint16_t acc_fs )
void em7180_mag_acc_set_fs ( em7180_t * em7180 , uint16_t mag_fs , uint16_t acc_fs )
{
{
uint8_t bytes [ 4 ] , STAT ;
uint8_t bytes [ 4 ] , STAT ;
bytes [ 0 ] = mag_fs & ( 0xFF ) ;
bytes [ 0 ] = mag_fs & ( 0xFF ) ;
bytes [ 1 ] = ( mag_fs > > 8 ) & ( 0xFF ) ;
bytes [ 1 ] = ( mag_fs > > 8 ) & ( 0xFF ) ;
bytes [ 2 ] = acc_fs & ( 0xFF ) ;
bytes [ 2 ] = acc_fs & ( 0xFF ) ;
bytes [ 3 ] = ( acc_fs > > 8 ) & ( 0xFF ) ;
bytes [ 3 ] = ( acc_fs > > 8 ) & ( 0xFF ) ;
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte0 , bytes [ 0 ] ) ; // Mag LSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte0 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte1 , bytes [ 1 ] ) ; // Mag MSB
bytes [ 0 ] ) ; // Mag LSB
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte2 , bytes [ 2 ] ) ; // Acc LSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte1 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte3 , bytes [ 3 ] ) ; // Acc MSB
bytes [ 1 ] ) ; // Mag MSB
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , 0xCA ) ; // Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte2 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
bytes [ 2 ] ) ; // Acc LSB
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte3 ,
bytes [ 3 ] ) ; // Acc MSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , 0xCA ) ; // Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
while ( ! ( STAT = = 0xCA ) )
while ( ! ( STAT = = 0xCA ) )
{
{
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ;
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_ParamAcknowledge ) ;
}
}
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
}
}
void em7180_set_integer_param ( uint8_t param , uint32_t param_val )
void em7180_set_integer_param ( em7180_t * em7180 , uint8_t param ,
uint32_t param_val )
{
{
uint8_t bytes [ 4 ] , STAT ;
uint8_t bytes [ 4 ] , STAT ;
bytes [ 0 ] = param_val & ( 0xFF ) ;
bytes [ 0 ] = param_val & ( 0xFF ) ;
@ -449,77 +434,90 @@ void em7180_set_integer_param(uint8_t param, uint32_t param_val)
bytes [ 2 ] = ( param_val > > 16 ) & ( 0xFF ) ;
bytes [ 2 ] = ( param_val > > 16 ) & ( 0xFF ) ;
bytes [ 3 ] = ( param_val > > 24 ) & ( 0xFF ) ;
bytes [ 3 ] = ( param_val > > 24 ) & ( 0xFF ) ;
param = param | 0x80 ; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs
param = param | 0x80 ; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte0 , bytes [ 0 ] ) ; // Param LSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte0 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte1 , bytes [ 1 ] ) ;
bytes [ 0 ] ) ; // Param LSB
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte2 , bytes [ 2 ] ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte1 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte3 , bytes [ 3 ] ) ; // Param MSB
bytes [ 1 ] ) ;
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , param ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte2 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
bytes [ 2 ] ) ;
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte3 ,
bytes [ 3 ] ) ; // Param MSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , param ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
while ( ! ( STAT = = param ) )
while ( ! ( STAT = = param ) )
{
{
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ;
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_ParamAcknowledge ) ;
}
}
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
}
}
void em7180_param_set_float ( uint8_t param , float param_val )
void em7180_param_set_float ( em7180_t * em7180 , uint8_t param , float param_val )
{
{
uint8_t bytes [ 4 ] , STAT ;
uint8_t bytes [ 4 ] , STAT ;
em7180_ float_to_bytes( param_val , & bytes [ 0 ] ) ;
float_to_bytes ( param_val , & bytes [ 0 ] ) ;
param = param | 0x80 ; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs
param = param | 0x80 ; // Parameter is the decimal value with the MSB set high to indicate a paramter write processs
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte0 , bytes [ 0 ] ) ; // Param LSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte0 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte1 , bytes [ 1 ] ) ;
bytes [ 0 ] ) ; // Param LSB
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte2 , bytes [ 2 ] ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte1 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_LoadParamByte3 , bytes [ 3 ] ) ; // Param MSB
bytes [ 1 ] ) ;
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , param ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte2 ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
bytes [ 2 ] ) ;
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_LoadParamByte3 ,
bytes [ 3 ] ) ; // Param MSB
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , param ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x80 ) ; // Request parameter transfer procedure
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamAcknowledge ) ; // Check the parameter acknowledge register and loop until the result matches parameter request byte
while ( ! ( STAT = = param ) )
while ( ! ( STAT = = param ) )
{
{
STAT = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_ParamAcknowledge ) ;
STAT = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
EM7180_ParamAcknowledge ) ;
}
}
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_ParamRequest , 0x00 ) ; // Parameter request = 0 to end parameter transfer process
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl , 0x00 ) ; // Re-start algorithm
}
}
void em7180_quatdata_get ( float * destination )
void em7180_quatdata_get ( em7180_t * em7180 , float * destination )
{
{
uint8_t rawData [ 16 ] ; // x/y/z quaternion register data stored here
uint8_t data [ 16 ] ; // x/y/z quaternion register data stored here
em7180_read ( EM7180_ADDRESS , EM7180_QX , 16 , & rawData [ 0 ] ) ; // Read the sixteen raw data registers into data array
destination [ 1 ] = uint32_reg_to_float ( & rawData [ 0 ] ) ;
destination [ 2 ] = uint32_reg_to_float ( & rawData [ 4 ] ) ;
destination [ 3 ] = uint32_reg_to_float ( & rawData [ 8 ] ) ;
destination [ 0 ] = uint32_reg_to_float ( & rawData [ 12 ] ) ; // SENtral stores quats as qx, qy, qz, q0!
i2c_read ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_QX , data , 16 ) ; // Read the sixteen raw data registers into data array
destination [ 1 ] = uint32_reg_to_float ( & data [ 0 ] ) ;
destination [ 2 ] = uint32_reg_to_float ( & data [ 4 ] ) ;
destination [ 3 ] = uint32_reg_to_float ( & data [ 8 ] ) ;
destination [ 0 ] = uint32_reg_to_float ( & data [ 12 ] ) ; // SENtral stores quats as qx, qy, qz, q0!
}
}
void em7180_acceldata_get ( int16_t * destination )
void em7180_acceldata_get ( em7180_t * em7180 , int16_t * destination )
{
{
uint8_t rawData [ 6 ] ; // x/y/z accel register data stored here
uint8_t data [ 6 ] ; // x/y/z accel register data stored here
em7180_read ( EM7180_ADDRESS , EM7180_AX , 6 , & rawData [ 0 ] ) ; // Read the six raw data registers into data array
destination [ 0 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 1 ] < < 8 ) | rawData [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
i2c_read ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AX , data , 6 ) ; // Read the six raw data registers into data array
destination [ 1 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 3 ] < < 8 ) | rawData [ 2 ] ) ;
destination [ 0 ] = ( int16_t ) ( ( ( int16_t ) data [ 1 ] < < 8 ) | data [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
destination [ 2 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 5 ] < < 8 ) | rawData [ 4 ] ) ;
destination [ 1 ] = ( int16_t ) ( ( ( int16_t ) data [ 3 ] < < 8 ) | data [ 2 ] ) ;
destination [ 2 ] = ( int16_t ) ( ( ( int16_t ) data [ 5 ] < < 8 ) | data [ 4 ] ) ;
}
}
void em7180_gyrodata_get ( int16_t * destination )
void em7180_gyrodata_get ( em7180_t * em7180 , int16_t * destination )
{
{
uint8_t rawData [ 6 ] ; // x/y/z gyro register data stored here
uint8_t data [ 6 ] ; // x/y/z gyro register data stored here
em7180_read ( EM7180_ADDRESS , EM7180_GX , 6 , & rawData [ 0 ] ) ; // Read the six raw data registers sequentially into data array
destination [ 0 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 1 ] < < 8 ) | rawData [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
i2c_read ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_GX , data , 6 ) ; // Read the six raw data registers sequentially into data array
destination [ 1 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 3 ] < < 8 ) | rawData [ 2 ] ) ;
destination [ 0 ] = ( int16_t ) ( ( ( int16_t ) data [ 1 ] < < 8 ) | data [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
destination [ 2 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 5 ] < < 8 ) | rawData [ 4 ] ) ;
destination [ 1 ] = ( int16_t ) ( ( ( int16_t ) data [ 3 ] < < 8 ) | data [ 2 ] ) ;
destination [ 2 ] = ( int16_t ) ( ( ( int16_t ) data [ 5 ] < < 8 ) | data [ 4 ] ) ;
}
}
void em7180_magdata_get ( int16_t * destination )
void em7180_magdata_get ( em7180_t * em7180 , int16_t * destination )
{
{
uint8_t rawData [ 6 ] ; // x/y/z gyro register data stored here
uint8_t data [ 6 ] ; // x/y/z mag register data stored here
em7180_read ( EM7180_ADDRESS , EM7180_MX , 6 , & rawData [ 0 ] ) ; // Read the six raw data registers sequentially into data array
destination [ 0 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 1 ] < < 8 ) | rawData [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
i2c_read ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_MX , data , 6 ) ; // Read the six raw data registers sequentially into data array
destination [ 1 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 3 ] < < 8 ) | rawData [ 2 ] ) ;
destination [ 0 ] = ( int16_t ) ( ( ( int16_t ) data [ 1 ] < < 8 ) | data [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
destination [ 2 ] = ( int16_t ) ( ( ( int16_t ) rawData [ 5 ] < < 8 ) | rawData [ 4 ] ) ;
destination [ 1 ] = ( int16_t ) ( ( ( int16_t ) data [ 3 ] < < 8 ) | data [ 2 ] ) ;
destination [ 2 ] = ( int16_t ) ( ( ( int16_t ) data [ 5 ] < < 8 ) | data [ 4 ] ) ;
}
}
float em7180_mres_get ( uint8_t Mscale )
float em7180_mres_get ( uint8_t Mscale )
@ -608,33 +606,39 @@ float em7180_ares_get(uint8_t ascale)
return a_res ;
return a_res ;
}
}
int16_t em7180_baro_get ( )
int16_t em7180_baro_get ( em7180_t * em7180 )
{
{
uint8_t rawData [ 2 ] ; // x/y/z gyro register data stored here
uint8_t data [ 2 ] ; // baro register data stored here
em7180_read ( EM7180_ADDRESS , EM7180_Baro , 2 , & rawData [ 0 ] ) ; // Read the two raw data registers sequentially into data array
return ( int16_t ) ( ( ( int16_t ) rawData [ 1 ] < < 8 ) | rawData [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
i2c_read ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_Baro , data , 2 ) ; // Read the two raw data registers sequentially into data array
return ( ( ( int16_t ) data [ 1 ] < < 8 ) | data [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
}
}
int16_t em7180_temp_get ( )
int16_t em7180_temp_get ( em7180_t * em7180 )
{
{
uint8_t rawData [ 2 ] ; // x/y/z gyro register data stored here
uint8_t data [ 2 ] ; // temp register data stored here
em7180_read ( EM7180_ADDRESS , EM7180_Temp , 2 , & rawData [ 0 ] ) ; // Read the two raw data registers sequentially into data array
return ( int16_t ) ( ( ( int16_t ) rawData [ 1 ] < < 8 ) | rawData [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
i2c_read ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_Temp , data , 2 ) ; // Read the two raw data registers sequentially into data array
return ( ( ( int16_t ) data [ 1 ] < < 8 ) | data [ 0 ] ) ; // Turn the MSB and LSB into a signed 16-bit value
}
}
void em7180_passthrough ( )
static void em7180_passthrough ( em7180_t * em7180 )
{
{
// First put SENtral in standby mode
// First put SENtral in standby mode
uint8_t c = lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl ) ;
uint8_t c = i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS ,
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_AlgorithmControl , c | 0x01 ) ;
EM7180_AlgorithmControl ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_AlgorithmControl ,
c | 0x01 ) ;
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus);
/* // Serial.print("c = "); Serial.println(c); */
/* // Serial.print("c = "); Serial.println(c); */
// Verify standby status
// Verify standby status
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) {
/* Serial.println("SENtral in standby mode"); */
/* Serial.println("SENtral in standby mode"); */
// Place SENtral in pass-through mode
// Place SENtral in pass-through mode
lsm6dsm_write_byte ( EM7180_ADDRESS , EM7180_PassThruControl , 0x01 ) ;
i2c_write_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_PassThruControl , 0x01 ) ;
if ( lsm6dsm_read_byte ( EM7180_ADDRESS , EM7180_PassThruStatus ) & 0x01 )
if ( i2c_read_byte ( em7180 - > hi2c , EM7180_ADDRESS , EM7180_PassThruStatus ) & 0x01 )
{
{
/* Serial.println("SENtral in pass-through mode"); */
/* Serial.println("SENtral in pass-through mode"); */
}
}
@ -644,67 +648,37 @@ void em7180_passthrough()
}
}
}
}
// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor
static float uint32_reg_to_float ( uint8_t * buf )
// since the address is defined by two bytes
static void m24512dfm_write_byte ( uint8_t device_address , uint8_t data_address1 ,
uint8_t data_address2 , uint8_t data )
{
{
uint8_t temp [ 2 ] = { data_address1 , data_address2 } ;
union
/* Wire.transfer(device_address, &temp[0], 2, NULL, 0); */
/* Wire.transfer(device_address, &data, 1, NULL, 0); */
}
static void m24512dfm_write ( uint8_t device_address , uint8_t data_address1 ,
uint8_t data_address2 , uint8_t count , uint8_t * dest )
{
if ( count > 128 )
{
{
count = 128 ;
uint32_t ui32 ;
/* Serial.print("Page count cannot be more than 128 bytes!"); */
float f ;
}
} u ;
uint8_t temp [ 2 ] = { data_address1 , data_address2 } ;
/* Wire.transfer(device_address, &temp[0], 2, NULL, 0); */
/* Wire.transfer(device_address, &dest[0], count, NULL, 0); */
}
static uint8_t m24512dfm_read_byte ( uint8_t device_address ,
uint8_t data_address1 , uint8_t data_address2 )
{
uint8_t data ; // `data` will store the register data
/* Wire.beginTransmission(device_address); // Initialize the Tx buffer */
/* Wire.write(data_address1); // Put slave register address in Tx buffer */
/* Wire.write(data_address2); // Put slave register address in Tx buffer */
/* Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive */
/* Wire.requestFrom(device_address, 1); // Read one byte from slave register address */
/* data = Wire.read(); // Fill Rx buffer with result */
return data ; // Return data read from slave register
}
static void m24512dfm_read ( uint8_t device_address , uint8_t data_address1 ,
u . ui32 = ( ( ( uint32_t ) buf [ 0 ] ) + ( ( ( uint32_t ) buf [ 1 ] ) < < 8 )
uint8_t data_address2 , uint8_t count , uint8_t * dest )
+ ( ( ( uint32_t ) buf [ 2 ] ) < < 16 ) + ( ( ( uint32_t ) buf [ 3 ] ) < < 24 ) ) ;
{
uint8_t temp [ 2 ] = { data_address1 , data_address2 } ;
/* Wire.transfer(device_address, &temp[0], 2, dest, count); */
}
// I2C read/write functions for the EM7180
return u . f ;
void em7180_write_byte ( uint8_t address , uint8_t subAddress , uint8_t data )
{
uint8_t temp [ 2 ] ;
temp [ 0 ] = subAddress ;
temp [ 1 ] = data ;
/* Wire.transfer(address, &temp[0], 2, NULL, 0); */
}
}
static uint8_t em7180_read_byte ( uint8_t address , uint8_t subAddress )
static void float_to_bytes ( float param_val , uint8_t * buf )
{
{
uint8_t temp [ 1 ] ;
union
/* Wire.transfer(address, &subAddress, 1, &temp[0], 1); */
{
return temp [ 0 ] ;
float f ;
}
uint8_t u8 [ sizeof ( float ) ] ;
} u ;
static void em7180_read ( uint8_t address , uint8_t subAddress , uint8_t count ,
u . f = param_val ;
uint8_t * dest )
for ( uint8_t i = 0 ; i < sizeof ( float ) ; i + + )
{
{
/* Wire.transfer(address, &subAddress, 1, dest, count); */
buf [ i ] = u . u8 [ i ] ;
}
// Convert to LITTLE ENDIAN
/* FIXME: What the hell? */
for ( uint8_t i = 0 ; i < sizeof ( float ) ; i + + )
{
buf [ i ] = buf [ ( sizeof ( float ) - 1 ) - i ] ;
}
}
}