You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
746 lines
28 KiB
746 lines
28 KiB
/* |
|
* em7180.c |
|
* |
|
* Created on: Jan 18, 2021 |
|
* Author: Daniel Peter Chokola |
|
* |
|
* Adapted From: |
|
* EM7180_LSM6DSM_LIS2MDL_LPS22HB_Butterfly |
|
* by: Kris Winer |
|
* 06/29/2017 Copyright Tlera Corporation |
|
* |
|
* Library may be used freely and without limit with attribution. |
|
*/ |
|
|
|
/* Includes */ |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <math.h> |
|
#include "em7180.h" |
|
|
|
/* Private Global Variables */ |
|
static uint8_t _intPin; |
|
static bool _passThru; |
|
static float _aRes; |
|
static float _gRes; |
|
static float _mRes; |
|
|
|
/* Function Prototypes */ |
|
static void m24512dfm_write_byte(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t data); |
|
static void m24512dfm_write(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest); |
|
static uint8_t m24512dfm_read_byte(uint8_t device_address, |
|
uint8_t data_address1, uint8_t data_address2); |
|
static void m24512dfm_read(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest); |
|
static uint8_t em7180_read_byte(uint8_t address, uint8_t subAddress); |
|
static void em7180_read(uint8_t address, uint8_t subAddress, uint8_t count, |
|
uint8_t *dest); |
|
|
|
/* Function Definitions */ |
|
em7180_new(uint8_t pin, bool passthru) |
|
{ |
|
/* pinMode(pin, INPUT); */ |
|
_intPin = pin; |
|
_passThru = passthru; |
|
} |
|
|
|
void em7180_chip_id_get() |
|
{ |
|
// Read SENtral device information |
|
uint16_t ROM1 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ROMVersion1); |
|
uint16_t ROM2 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ROMVersion2); |
|
/* Serial.print("EM7180 ROM Version: 0x"); */ |
|
/* Serial.print(ROM1, HEX); */ |
|
/* Serial.println(ROM2, HEX); */ |
|
/* Serial.println("Should be: 0xE609"); */ |
|
uint16_t RAM1 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RAMVersion1); |
|
uint16_t RAM2 = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RAMVersion2); |
|
/* Serial.print("EM7180 RAM Version: 0x"); */ |
|
/* Serial.print(RAM1); */ |
|
/* Serial.println(RAM2); */ |
|
uint8_t PID = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ProductID); |
|
/* Serial.print("EM7180 ProductID: 0x"); */ |
|
/* Serial.print(PID, HEX); */ |
|
/* Serial.println(" Should be: 0x80"); */ |
|
uint8_t RID = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RevisionID); |
|
/* Serial.print("EM7180 RevisionID: 0x"); */ |
|
/* Serial.print(RID, HEX); */ |
|
/* Serial.println(" Should be: 0x02"); */ |
|
} |
|
|
|
void em7180_load_fw_from_eeprom() |
|
{ |
|
// Check which sensors can be detected by the EM7180 |
|
uint8_t featureflag = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_FeatureFlags); |
|
if(featureflag & 0x01) |
|
{ |
|
/* Serial.println("A barometer is installed"); */ |
|
} |
|
if(featureflag & 0x02) |
|
{ |
|
/* Serial.println("A humidity sensor is installed"); */ |
|
} |
|
if(featureflag & 0x04) |
|
{ |
|
/* Serial.println("A temperature sensor is installed"); */ |
|
} |
|
if(featureflag & 0x08) |
|
{ |
|
/* Serial.println("A custom sensor is installed"); */ |
|
} |
|
if(featureflag & 0x10) |
|
{ |
|
/* Serial.println("A second custom sensor is installed"); */ |
|
} |
|
if(featureflag & 0x20) |
|
{ |
|
/* Serial.println("A third custom sensor is installed"); */ |
|
} |
|
|
|
HAL_Delay(1000); // give some time to read the screen |
|
|
|
// Check SENtral status, make sure EEPROM upload of firmware was accomplished |
|
uint8_t STAT = (lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) |
|
& 0x01); |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) |
|
{ |
|
/* Serial.println("EEPROM detected on the sensor bus!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) |
|
{ |
|
/* Serial.println("EEPROM uploaded config file!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) |
|
{ |
|
/* Serial.println("EEPROM CRC incorrect!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) |
|
{ |
|
/* Serial.println("EM7180 in initialized state!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) |
|
{ |
|
/* Serial.println("No EEPROM detected!"); */ |
|
} |
|
int count = 0; |
|
while(!STAT) |
|
{ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ResetRequest, 0x01); |
|
HAL_Delay(500); |
|
count++; |
|
STAT = (lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01); |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x01) |
|
{ |
|
/* Serial.println("EEPROM detected on the sensor bus!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x02) |
|
{ |
|
/* Serial.println("EEPROM uploaded config file!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04) |
|
{ |
|
/* Serial.println("EEPROM CRC incorrect!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x08) |
|
{ |
|
/* Serial.println("EM7180 in initialized state!"); */ |
|
} |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x10) |
|
{ |
|
/* Serial.println("No EEPROM detected!"); */ |
|
} |
|
if(count > 10) |
|
{ |
|
break; |
|
} |
|
} |
|
|
|
if(!(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SentralStatus) & 0x04)) |
|
{ |
|
/* Serial.println("EEPROM upload successful!"); */ |
|
} |
|
} |
|
|
|
uint8_t em7180_status() |
|
{ |
|
// Check event status register, way to check data ready by polling rather than interrupt |
|
uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_EventStatus); // reading clears the register and interrupt |
|
return c; |
|
} |
|
|
|
uint8_t em7180_errors() |
|
{ |
|
uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ErrorRegister); // check error register |
|
return c; |
|
} |
|
|
|
void em7180_init(uint8_t accBW, uint8_t gyroBW, uint16_t accFS, uint16_t gyroFS, |
|
uint16_t magFS, uint8_t QRtDiv, uint8_t magRt, uint8_t accRt, |
|
uint8_t gyroRt, uint8_t baroRt) |
|
{ |
|
uint16_t EM7180_mag_fs, EM7180_acc_fs, EM7180_gyro_fs; // EM7180 sensor full scale ranges |
|
uint8_t param[4]; |
|
|
|
// Enter EM7180 initialized state |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_PassThruControl, 0x00); // make sure pass through mode is off |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // Force initialize |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x00); // set SENtral in initialized state to configure registers |
|
|
|
//Setup LPF bandwidth (BEFORE setting ODR's) |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ACC_LPF_BW, accBW); // accBW = 3 = 41Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_GYRO_LPF_BW, gyroBW); // gyroBW = 3 = 41Hz |
|
// Set accel/gyro/mag desired ODR rates |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_QRateDivisor, QRtDiv); // quat rate = gyroRt/(1 QRTDiv) |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_MagRate, magRt); // 0x64 = 100 Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AccelRate, accRt); // 200/10 Hz, 0x14 = 200 Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_GyroRate, gyroRt); // 200/10 Hz, 0x14 = 200 Hz |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_BaroRate, 0x80 | baroRt); // set enable bit and set Baro rate to 25 Hz, rate = baroRt/2, 0x32 = 25 Hz |
|
|
|
// Configure operating mode |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // read scale sensor data |
|
// Enable interrupt to host upon certain events |
|
// choose host interrupts when any sensor updated (0x40), new gyro data (0x20), new accel data (0x10), |
|
// new mag data (0x08), quaternions updated (0x04), an error occurs (0x02), or the SENtral needs to be reset(0x01) |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_EnableEvents, 0x07); |
|
// Enable EM7180 run mode |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_HostControl, 0x01); // set SENtral in normal run mode |
|
HAL_Delay(100); |
|
|
|
// EM7180 parameter adjustments |
|
/* Serial.println("Beginning Parameter Adjustments"); */ |
|
|
|
// Read sensor default FS values from parameter space |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process |
|
uint8_t param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4A)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_mag_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
EM7180_acc_fs = ((int16_t) (param[3] << 8) | param[2]); |
|
/* Serial.print("Magnetometer Default Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_mag_fs); */ |
|
/* Serial.println("uT"); */ |
|
/* Serial.print("Accelerometer Default Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_acc_fs); */ |
|
/* Serial.println("g"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4B)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_gyro_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
/* Serial.print("Gyroscope Default Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_gyro_fs); */ |
|
/* Serial.println("dps"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm |
|
|
|
//Disable stillness mode for balancing robot application |
|
EM7180_set_integer_param(0x49, 0x00); |
|
|
|
//Write desired sensor full scale ranges to the EM7180 |
|
EM7180_set_mag_acc_FS(magFS, accFS); // 1000 uT == 0x3E8, 8 g == 0x08 |
|
EM7180_set_gyro_FS(gyroFS); // 2000 dps == 0x7D0 |
|
|
|
// Read sensor new FS values from parameter space |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4A); // Request to read parameter 74 |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); // Request parameter transfer process |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4A)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_mag_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
EM7180_acc_fs = ((int16_t) (param[3] << 8) | param[2]); |
|
/* Serial.print("Magnetometer New Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_mag_fs); */ |
|
/* Serial.println("uT"); */ |
|
/* Serial.print("Accelerometer New Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_acc_fs); */ |
|
/* Serial.println("g"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x4B); // Request to read parameter 75 |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
while(!(param_xfer == 0x4B)) |
|
{ |
|
param_xfer = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
param[0] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte0); |
|
param[1] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte1); |
|
param[2] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte2); |
|
param[3] = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_SavedParamByte3); |
|
EM7180_gyro_fs = ((int16_t) (param[1] << 8) | param[0]); |
|
/* Serial.print("Gyroscope New Full Scale Range: +/-"); */ |
|
/* Serial.print(EM7180_gyro_fs); */ |
|
/* Serial.println("dps"); */ |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //End parameter transfer |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // re-enable algorithm |
|
|
|
// Read EM7180 status |
|
uint8_t runStatus = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_RunStatus); |
|
if(runStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 run status = normal mode"); */ |
|
} |
|
uint8_t algoStatus = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_AlgorithmStatus); |
|
if(algoStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 standby status"); */ |
|
} |
|
if(algoStatus & 0x02) |
|
{ |
|
/* Serial.println(" EM7180 algorithm slow"); */ |
|
} |
|
if(algoStatus & 0x04) |
|
{ |
|
/* Serial.println(" EM7180 in stillness mode"); */ |
|
} |
|
if(algoStatus & 0x08) |
|
{ |
|
/* Serial.println(" EM7180 mag calibration completed"); */ |
|
} |
|
if(algoStatus & 0x10) |
|
{ |
|
/* Serial.println(" EM7180 magnetic anomaly detected"); */ |
|
} |
|
if(algoStatus & 0x20) |
|
{ |
|
/* Serial.println(" EM7180 unreliable sensor data"); */ |
|
} |
|
uint8_t passthruStatus = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_PassThruStatus); |
|
if(passthruStatus & 0x01) |
|
{ |
|
/* Serial.print(" EM7180 in passthru mode!"); */ |
|
} |
|
uint8_t eventStatus = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_EventStatus); |
|
if(eventStatus & 0x01) |
|
{ |
|
/* Serial.println(" EM7180 CPU reset"); */ |
|
} |
|
if(eventStatus & 0x02) |
|
{ |
|
/* Serial.println(" EM7180 Error"); */ |
|
} |
|
if(eventStatus & 0x04) |
|
{ |
|
/* Serial.println(" EM7180 new quaternion result"); */ |
|
} |
|
if(eventStatus & 0x08) |
|
{ |
|
/* Serial.println(" EM7180 new mag result"); */ |
|
} |
|
if(eventStatus & 0x10) |
|
{ |
|
/* Serial.println(" EM7180 new accel result"); */ |
|
} |
|
if(eventStatus & 0x20) |
|
{ |
|
/* Serial.println(" EM7180 new gyro result"); */ |
|
} |
|
|
|
HAL_Delay(1000); // give some time to read the screen |
|
|
|
// Check sensor status |
|
uint8_t sensorStatus = lsm6dsm_read_byte(EM7180_ADDRESS, |
|
EM7180_SensorStatus); |
|
/* Serial.print(" EM7180 sensor status = "); */ |
|
/* Serial.println(sensorStatus); */ |
|
if(sensorStatus & 0x01) |
|
{ |
|
/* Serial.print("Magnetometer not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x02) |
|
{ |
|
/* Serial.print("Accelerometer not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x04) |
|
{ |
|
/* Serial.print("Gyro not acknowledging!"); */ |
|
} |
|
if(sensorStatus & 0x10) |
|
{ |
|
/* Serial.print("Magnetometer ID not recognized!"); */ |
|
} |
|
if(sensorStatus & 0x20) |
|
{ |
|
/* Serial.print("Accelerometer ID not recognized!"); */ |
|
} |
|
if(sensorStatus & 0x40) |
|
{ |
|
/* Serial.print("Gyro ID not recognized!"); */ |
|
} |
|
|
|
/* Serial.print("Actual MagRate = "); */ |
|
/* Serial.print(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualMagRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual AccelRate = "); */ |
|
/* Serial.print(10 * lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualAccelRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual GyroRate = "); */ |
|
/* Serial.print(10 * lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualGyroRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
/* Serial.print("Actual BaroRate = "); */ |
|
/* Serial.print(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ActualBaroRate)); */ |
|
/* Serial.println(" Hz"); */ |
|
} |
|
|
|
float em7180_uint32_reg_to_float(uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
uint32_t ui32; |
|
float f; |
|
} u; |
|
|
|
u.ui32 = (((uint32_t) buf[0]) + (((uint32_t) buf[1]) << 8) |
|
+ (((uint32_t) buf[2]) << 16) + (((uint32_t) buf[3]) << 24)); |
|
return u.f; |
|
} |
|
|
|
float em7180_int32_reg_to_float(uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
int32_t i32; |
|
float f; |
|
} u; |
|
|
|
u.i32 = (((int32_t) buf[0]) + (((int32_t) buf[1]) << 8) |
|
+ (((int32_t) buf[2]) << 16) + (((int32_t) buf[3]) << 24)); |
|
return u.f; |
|
} |
|
|
|
void em7180_float_to_bytes(float param_val, uint8_t *buf) |
|
{ |
|
union |
|
{ |
|
float f; |
|
uint8_t comp[sizeof(float)]; |
|
} u; |
|
u.f = param_val; |
|
for(uint8_t i = 0; i < sizeof(float); i++) |
|
{ |
|
buf[i] = u.comp[i]; |
|
} |
|
//Convert to LITTLE ENDIAN |
|
for(uint8_t i = 0; i < sizeof(float); i++) |
|
{ |
|
buf[i] = buf[(sizeof(float) - 1) - i]; |
|
} |
|
} |
|
|
|
void em7180_gyro_set_fs(uint16_t gyro_fs) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = gyro_fs & (0xFF); |
|
bytes[1] = (gyro_fs >> 8) & (0xFF); |
|
bytes[2] = 0x00; |
|
bytes[3] = 0x00; |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Gyro LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Gyro MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Unused |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Unused |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCB); //Parameter 75; 0xCB is 75 decimal with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == 0xCB)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_mag_acc_set_fs(uint16_t mag_fs, uint16_t acc_fs) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = mag_fs & (0xFF); |
|
bytes[1] = (mag_fs >> 8) & (0xFF); |
|
bytes[2] = acc_fs & (0xFF); |
|
bytes[3] = (acc_fs >> 8) & (0xFF); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Mag LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); //Mag MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); //Acc LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Acc MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0xCA); //Parameter 74; 0xCA is 74 decimal with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == 0xCA)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_set_integer_param(uint8_t param, uint32_t param_val) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
bytes[0] = param_val & (0xFF); |
|
bytes[1] = (param_val >> 8) & (0xFF); |
|
bytes[2] = (param_val >> 16) & (0xFF); |
|
bytes[3] = (param_val >> 24) & (0xFF); |
|
param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, param); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == param)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_param_set_float(uint8_t param, float param_val) |
|
{ |
|
uint8_t bytes[4], STAT; |
|
float_to_bytes(param_val, &bytes[0]); |
|
param = param | 0x80; //Parameter is the decimal value with the MSB set high to indicate a paramter write processs |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte0, bytes[0]); //Param LSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte1, bytes[1]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte2, bytes[2]); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_LoadParamByte3, bytes[3]); //Param MSB |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, param); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x80); //Request parameter transfer procedure |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); //Check the parameter acknowledge register and loop until the result matches parameter request byte |
|
while(!(STAT == param)) |
|
{ |
|
STAT = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_ParamAcknowledge); |
|
} |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_ParamRequest, 0x00); //Parameter request = 0 to end parameter transfer process |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, 0x00); // Re-start algorithm |
|
} |
|
|
|
void em7180_quatdata_get(float *destination) |
|
{ |
|
uint8_t rawData[16]; // x/y/z quaternion register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_QX, 16, &rawData[0]); // Read the sixteen raw data registers into data array |
|
destination[1] = uint32_reg_to_float(&rawData[0]); |
|
destination[2] = uint32_reg_to_float(&rawData[4]); |
|
destination[3] = uint32_reg_to_float(&rawData[8]); |
|
destination[0] = uint32_reg_to_float(&rawData[12]); // SENtral stores quats as qx, qy, qz, q0! |
|
|
|
} |
|
|
|
void em7180_acceldata_get(int16_t *destination) |
|
{ |
|
uint8_t rawData[6]; // x/y/z accel register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_AX, 6, &rawData[0]); // Read the six raw data registers into data array |
|
destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); |
|
destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); |
|
} |
|
|
|
void em7180_gyrodata_get(int16_t *destination) |
|
{ |
|
uint8_t rawData[6]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_GX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
|
destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); |
|
destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); |
|
} |
|
|
|
void em7180_magdata_get(int16_t *destination) |
|
{ |
|
uint8_t rawData[6]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_MX, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
|
destination[0] = (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
destination[1] = (int16_t) (((int16_t) rawData[3] << 8) | rawData[2]); |
|
destination[2] = (int16_t) (((int16_t) rawData[5] << 8) | rawData[4]); |
|
} |
|
|
|
float em7180_mres_get(uint8_t Mscale) |
|
{ |
|
switch(Mscale) |
|
{ |
|
// Possible magnetometer scales (and their register bit settings) are: |
|
// 14 bit resolution (0) and 16 bit resolution (1) |
|
case MFS_14BITS: |
|
_mRes = 10. * 4912. / 8190.; // Proper scale to return milliGauss |
|
return _mRes; |
|
break; |
|
case MFS_16BITS: |
|
_mRes = 10. * 4912. / 32760.0; // Proper scale to return milliGauss |
|
return _mRes; |
|
break; |
|
} |
|
} |
|
|
|
float em7180_gres_get(uint8_t gscale) |
|
{ |
|
switch(gscale) |
|
{ |
|
// Possible gyro scales (and their register bit settings) are: |
|
// 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). |
|
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
|
case GFS_250DPS: |
|
_gRes = 250.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
case GFS_500DPS: |
|
_gRes = 500.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
case GFS_1000DPS: |
|
_gRes = 1000.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
case GFS_2000DPS: |
|
_gRes = 2000.0 / 32768.0; |
|
return _gRes; |
|
break; |
|
} |
|
} |
|
|
|
float em7180_ares_get(uint8_t ascale) |
|
{ |
|
switch(ascale) |
|
{ |
|
// Possible accelerometer scales (and their register bit settings) are: |
|
// 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). |
|
// Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
|
case AFS_2G: |
|
_aRes = 2.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
case AFS_4G: |
|
_aRes = 4.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
case AFS_8G: |
|
_aRes = 8.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
case AFS_16G: |
|
_aRes = 16.0 / 32768.0; |
|
return _aRes; |
|
break; |
|
} |
|
} |
|
|
|
int16_t em7180_baro_get() |
|
{ |
|
uint8_t rawData[2]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_Baro, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
|
return (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
} |
|
|
|
int16_t em7180_temp_get() |
|
{ |
|
uint8_t rawData[2]; // x/y/z gyro register data stored here |
|
em7180_read(EM7180_ADDRESS, EM7180_Temp, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
|
return (int16_t) (((int16_t) rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
|
} |
|
|
|
void em7180_passthrough() |
|
{ |
|
// First put SENtral in standby mode |
|
uint8_t c = lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_AlgorithmControl); |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_AlgorithmControl, c | 0x01); |
|
// c = readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus); |
|
/* // Serial.print("c = "); Serial.println(c); */ |
|
// Verify standby status |
|
// if(readByte(EM7180_ADDRESS, EM7180_AlgorithmStatus) & 0x01) { |
|
/* Serial.println("SENtral in standby mode"); */ |
|
// Place SENtral in pass-through mode |
|
lsm6dsm_write_byte(EM7180_ADDRESS, EM7180_PassThruControl, 0x01); |
|
if(lsm6dsm_read_byte(EM7180_ADDRESS, EM7180_PassThruStatus) & 0x01) |
|
{ |
|
/* Serial.println("SENtral in pass-through mode"); */ |
|
} |
|
else |
|
{ |
|
/* Serial.println("ERROR! SENtral not in pass-through mode!"); */ |
|
} |
|
} |
|
|
|
// I2C communication with the M24512DFM EEPROM is a little different from I2C communication with the usual motion sensor |
|
// since the address is defined by two bytes |
|
static void m24512dfm_write_byte(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t data) |
|
{ |
|
uint8_t temp[2] = { data_address1, data_address2 }; |
|
/* Wire.transfer(device_address, &temp[0], 2, NULL, 0); */ |
|
/* Wire.transfer(device_address, &data, 1, NULL, 0); */ |
|
} |
|
|
|
static void m24512dfm_write(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest) |
|
{ |
|
if(count > 128) |
|
{ |
|
count = 128; |
|
/* Serial.print("Page count cannot be more than 128 bytes!"); */ |
|
} |
|
uint8_t temp[2] = { data_address1, data_address2 }; |
|
/* Wire.transfer(device_address, &temp[0], 2, NULL, 0); */ |
|
/* Wire.transfer(device_address, &dest[0], count, NULL, 0); */ |
|
} |
|
|
|
static uint8_t m24512dfm_read_byte(uint8_t device_address, |
|
uint8_t data_address1, uint8_t data_address2) |
|
{ |
|
uint8_t data; // `data` will store the register data |
|
/* Wire.beginTransmission(device_address); // Initialize the Tx buffer */ |
|
/* Wire.write(data_address1); // Put slave register address in Tx buffer */ |
|
/* Wire.write(data_address2); // Put slave register address in Tx buffer */ |
|
/* Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive */ |
|
/* Wire.requestFrom(device_address, 1); // Read one byte from slave register address */ |
|
/* data = Wire.read(); // Fill Rx buffer with result */ |
|
return data; // Return data read from slave register |
|
} |
|
|
|
static void m24512dfm_read(uint8_t device_address, uint8_t data_address1, |
|
uint8_t data_address2, uint8_t count, uint8_t *dest) |
|
{ |
|
uint8_t temp[2] = { data_address1, data_address2 }; |
|
/* Wire.transfer(device_address, &temp[0], 2, dest, count); */ |
|
} |
|
|
|
// I2C read/write functions for the EM7180 |
|
void em7180_write_byte(uint8_t address, uint8_t subAddress, uint8_t data) |
|
{ |
|
uint8_t temp[2]; |
|
temp[0] = subAddress; |
|
temp[1] = data; |
|
/* Wire.transfer(address, &temp[0], 2, NULL, 0); */ |
|
} |
|
|
|
static uint8_t em7180_read_byte(uint8_t address, uint8_t subAddress) |
|
{ |
|
uint8_t temp[1]; |
|
/* Wire.transfer(address, &subAddress, 1, &temp[0], 1); */ |
|
return temp[0]; |
|
} |
|
|
|
static void em7180_read(uint8_t address, uint8_t subAddress, uint8_t count, |
|
uint8_t *dest) |
|
{ |
|
/* Wire.transfer(address, &subAddress, 1, dest, count); */ |
|
}
|
|
|