You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

1196 lines
33 KiB

/*!
* \file radio_driver.c
*
* \brief radio driver implementation
*
* \copyright Revised BSD License, see section \ref LICENSE.
*
* \code
* ______ _
* / _____) _ | |
* ( (____ _____ ____ _| |_ _____ ____| |__
* \____ \| ___ | (_ _) ___ |/ ___) _ \
* _____) ) ____| | | || |_| ____( (___| | | |
* (______/|_____)_|_|_| \__)_____)\____)_| |_|
* (C)2013-2017 Semtech
*
* \endcode
*
* \author Miguel Luis ( Semtech )
*
* \author Gregory Cristian ( Semtech )
*/
/**
******************************************************************************
*
* Portions COPYRIGHT 2020 STMicroelectronics
*
* @file radio_driver.c
* @author MCD Application Team
* @brief radio driver implementation
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "radio_conf.h"
#include "radio_driver.h"
/* External variables ---------------------------------------------------------*/
/*!
* \brief Sughz handler
*/
extern SUBGHZ_HandleTypeDef hsubghz;
/* Private typedef -----------------------------------------------------------*/
/*!
* FSK bandwidth definition
*/
typedef struct FskBandwidth_s
{
uint32_t bandwidth;
uint8_t RegValue;
} FskBandwidth_t;
/* Private define ------------------------------------------------------------*/
/**
* @brief drive value used anytime radio is NOT in TX low power mode
* @note SMPS_DRIVE_SETTING_DEFAULT can be redefined in radio_conf.h
*/
#ifndef SMPS_DRIVE_SETTING_DEFAULT
#define SMPS_DRIVE_SETTING_DEFAULT SMPS_DRV_40
#endif /* SMPS_DRIVE_SETTING_DEFAULT */
/**
* @brief drive value used anytime radio is in TX low power mode
* TX low power mode is the worst case because the PA sinks from SMPS
* while in high power mode, current is sunk directly from the battery
* @note SMPS_DRIVE_SETTING_MAX can be redefined in radio_conf.h
*/
#ifndef SMPS_DRIVE_SETTING_MAX
#define SMPS_DRIVE_SETTING_MAX SMPS_DRV_60
#endif /* SMPS_DRIVE_SETTING_MAX */
/**
* @brief Provides the frequency of the chip running on the radio and the frequency step
* @remark These defines are used for computing the frequency divider to set the RF frequency
* @note XTAL_FREQ can be redefined in radio_conf.h
*/
#ifndef XTAL_FREQ
#define XTAL_FREQ ( 32000000UL )
#endif /* XTAL_FREQ */
/**
* @brief in XO mode, set internal capacitor (from 0x00 to 0x2F starting 11.2pF with 0.47pF steps)
* @note XTAL_DEFAULT_CAP_VALUE can be redefined in radio_conf.h
*/
#ifndef XTAL_DEFAULT_CAP_VALUE
#define XTAL_DEFAULT_CAP_VALUE ( 0x20UL )
#endif /* XTAL_DEFAULT_CAP_VALUE */
/**
* @brief voltage of vdd tcxo.
* @note TCXO_CTRL_VOLTAGE can be redefined in radio_conf.h
*/
#ifndef TCXO_CTRL_VOLTAGE
#define TCXO_CTRL_VOLTAGE TCXO_CTRL_1_7V
#endif /* TCXO_CTRL_VOLTAGE */
/**
* @brief Radio maximum wakeup time (in ms)
* @note RF_WAKEUP_TIME can be redefined in radio_conf.h
*/
#ifndef RF_WAKEUP_TIME
#define RF_WAKEUP_TIME ( 10UL )
#endif /* RF_WAKEUP_TIME */
/**
* @brief DCDC is present and enabled
* @remark this define is only used if the DCDC is present on the board
* @note DCDC_ENABLE can be redefined in radio_conf.h
*/
#ifndef DCDC_ENABLE
#define DCDC_ENABLE ( 1UL )
#endif /* DCDC_ENABLE */
/* Private macro -------------------------------------------------------------*/
#define SX_FREQ_TO_CHANNEL( channel, freq ) \
do \
{ \
channel = (uint32_t) ((((uint64_t) freq)<<25)/(XTAL_FREQ) ); \
}while( 0 )
/* Private variables ---------------------------------------------------------*/
/*!
* \brief Holds the internal operating mode of the radio
*/
static RadioOperatingModes_t OperatingMode;
/*!
* \brief Stores the current packet type set in the radio
*/
static RadioPacketTypes_t PacketType;
/*!
* \brief Stores the current packet header type set in the radio
*/
static volatile RadioLoRaPacketLengthsMode_t LoRaHeaderType;
/*!
* \brief Stores the last frequency error measured on LoRa received packet
*/
volatile uint32_t FrequencyError = 0;
/*!
* \brief Hold the status of the Image calibration
*/
static bool ImageCalibrated = false;
/*!
* Precomputed FSK bandwidth registers values
*/
static const FskBandwidth_t FskBandwidths[] =
{
{ 4800 , 0x1F },
{ 5800 , 0x17 },
{ 7300 , 0x0F },
{ 9700 , 0x1E },
{ 11700 , 0x16 },
{ 14600 , 0x0E },
{ 19500 , 0x1D },
{ 23400 , 0x15 },
{ 29300 , 0x0D },
{ 39000 , 0x1C },
{ 46900 , 0x14 },
{ 58600 , 0x0C },
{ 78200 , 0x1B },
{ 93800 , 0x13 },
{ 117300, 0x0B },
{ 156200, 0x1A },
{ 187200, 0x12 },
{ 234300, 0x0A },
{ 312000, 0x19 },
{ 373600, 0x11 },
{ 467000, 0x09 },
{ 500000, 0x00 }, // Invalid Bandwidth
};
/* Private function prototypes -----------------------------------------------*/
/*!
* \brief This set SMPS drive capability wrt. RF mode
*/
static void Radio_SMPS_Set( uint8_t level );
/*!
* \brief IRQ Callback radio function
*/
static DioIrqHandler RadioOnDioIrqCb;
/*!
* \brief Write command to the radio
*
* \param [in] SetCommand The Write Command
* \param [out] buffer A pointer command buffer
* \param [in] size Size in byte of the command buffer
*/
static void SUBGRF_WriteCommand( SUBGHZ_RadioSetCmd_t Command, uint8_t *pBuffer,
uint16_t Size );
/*!
* \brief Read command to the radio
*
* \param [in] GetCommand The Read Command
* \param [out] buffer A pointer command buffer
* \param [in] size Size in byte of the command buffer
*/
static void SUBGRF_ReadCommand( SUBGHZ_RadioGetCmd_t Command, uint8_t *pBuffer,
uint16_t Size );
/* Exported functions ---------------------------------------------------------*/
void SUBGRF_Init( DioIrqHandler dioIrq )
{
if ( dioIrq != NULL)
{
RadioOnDioIrqCb = dioIrq;
}
RADIO_INIT();
/* set default SMPS current drive to default*/
Radio_SMPS_Set(SMPS_DRIVE_SETTING_DEFAULT);
ImageCalibrated = false;
SUBGRF_SetStandby( STDBY_RC );
// Initialize TCXO control
if (1U == RBI_IsTCXO() )
{
SUBGRF_SetTcxoMode( TCXO_CTRL_VOLTAGE, RF_WAKEUP_TIME << 6 );// 100 ms
SUBGRF_WriteRegister( REG_XTA_TRIM, 0x00 );
/*enable calibration for cut1.1 and later*/
CalibrationParams_t calibParam;
calibParam.Value = 0x7F;
SUBGRF_Calibrate( calibParam );
}
else
{
SUBGRF_WriteRegister( REG_XTA_TRIM, XTAL_DEFAULT_CAP_VALUE );
SUBGRF_WriteRegister( REG_XTB_TRIM, XTAL_DEFAULT_CAP_VALUE );
}
/* Init RF Switch */
RBI_Init();
OperatingMode = MODE_STDBY_RC;
}
RadioOperatingModes_t SUBGRF_GetOperatingMode( void )
{
return OperatingMode;
}
void SUBGRF_SetPayload( uint8_t *payload, uint8_t size )
{
SUBGRF_WriteBuffer( 0x00, payload, size );
}
uint8_t SUBGRF_GetPayload( uint8_t *buffer, uint8_t *size, uint8_t maxSize )
{
uint8_t offset = 0;
SUBGRF_GetRxBufferStatus( size, &offset );
if( *size > maxSize )
{
return 1;
}
SUBGRF_ReadBuffer( offset, buffer, *size );
return 0;
}
void SUBGRF_SendPayload( uint8_t *payload, uint8_t size, uint32_t timeout)
{
SUBGRF_SetPayload( payload, size );
SUBGRF_SetTx( timeout );
}
uint8_t SUBGRF_SetSyncWord( uint8_t *syncWord )
{
SUBGRF_WriteRegisters( REG_LR_SYNCWORDBASEADDRESS, syncWord, 8 );
return 0;
}
void SUBGRF_SetCrcSeed( uint16_t seed )
{
uint8_t buf[2];
buf[0] = ( uint8_t )( ( seed >> 8 ) & 0xFF );
buf[1] = ( uint8_t )( seed & 0xFF );
switch( SUBGRF_GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
SUBGRF_WriteRegisters( REG_LR_CRCSEEDBASEADDR, buf, 2 );
break;
default:
break;
}
}
void SUBGRF_SetCrcPolynomial( uint16_t polynomial )
{
uint8_t buf[2];
buf[0] = ( uint8_t )( ( polynomial >> 8 ) & 0xFF );
buf[1] = ( uint8_t )( polynomial & 0xFF );
switch( SUBGRF_GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
SUBGRF_WriteRegisters( REG_LR_CRCPOLYBASEADDR, buf, 2 );
break;
default:
break;
}
}
void SUBGRF_SetWhiteningSeed( uint16_t seed )
{
uint8_t regValue = 0;
switch( SUBGRF_GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
regValue = SUBGRF_ReadRegister( REG_LR_WHITSEEDBASEADDR_MSB ) & 0xFE;
regValue = ( ( seed >> 8 ) & 0x01 ) | regValue;
SUBGRF_WriteRegister( REG_LR_WHITSEEDBASEADDR_MSB, regValue ); // only 1 bit.
SUBGRF_WriteRegister( REG_LR_WHITSEEDBASEADDR_LSB, (uint8_t)seed );
break;
default:
break;
}
}
uint32_t SUBGRF_GetRandom( void )
{
uint32_t number = 0;
uint8_t regAnaLna = 0;
uint8_t regAnaMixer = 0;
regAnaLna = SUBGRF_ReadRegister( REG_ANA_LNA );
SUBGRF_WriteRegister( REG_ANA_LNA, regAnaLna & ~( 1 << 0 ) );
regAnaMixer = SUBGRF_ReadRegister( REG_ANA_MIXER );
SUBGRF_WriteRegister( REG_ANA_MIXER, regAnaMixer & ~( 1 << 7 ) );
// Set radio in continuous reception
SUBGRF_SetRx( 0xFFFFFF ); // Rx Continuous
SUBGRF_ReadRegisters( RANDOM_NUMBER_GENERATORBASEADDR, ( uint8_t* )&number, 4 );
SUBGRF_SetStandby( STDBY_RC );
SUBGRF_WriteRegister( REG_ANA_LNA, regAnaLna );
SUBGRF_WriteRegister( REG_ANA_MIXER, regAnaMixer );
return number;
}
void SUBGRF_SetSleep( SleepParams_t sleepConfig )
{
/* switch the antenna OFF by SW */
RBI_ConfigRFSwitch(RBI_SWITCH_OFF);
Radio_SMPS_Set(SMPS_DRIVE_SETTING_DEFAULT);
uint8_t value = ( ( ( uint8_t )sleepConfig.Fields.WarmStart << 2 ) |
( ( uint8_t )sleepConfig.Fields.Reset << 1 ) |
( ( uint8_t )sleepConfig.Fields.WakeUpRTC ) );
SUBGRF_WriteCommand( RADIO_SET_SLEEP, &value, 1 );
OperatingMode = MODE_SLEEP;
}
void SUBGRF_SetStandby( RadioStandbyModes_t standbyConfig )
{
SUBGRF_WriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 );
if( standbyConfig == STDBY_RC )
{
OperatingMode = MODE_STDBY_RC;
}
else
{
OperatingMode = MODE_STDBY_XOSC;
}
}
void SUBGRF_SetFs( void )
{
SUBGRF_WriteCommand( RADIO_SET_FS, 0, 0 );
OperatingMode = MODE_FS;
}
void SUBGRF_SetTx( uint32_t timeout )
{
uint8_t buf[3];
OperatingMode = MODE_TX;
buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
buf[2] = ( uint8_t )( timeout & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_TX, buf, 3 );
}
void SUBGRF_SetRx( uint32_t timeout )
{
uint8_t buf[3];
OperatingMode = MODE_RX;
buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
buf[2] = ( uint8_t )( timeout & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_RX, buf, 3 );
}
void SUBGRF_SetRxBoosted( uint32_t timeout )
{
uint8_t buf[3];
OperatingMode = MODE_RX;
/* ST_WORKAROUND_BEGIN: Sigfox patch > 0x96 replaced by 0x97 */
SUBGRF_WriteRegister( REG_RX_GAIN, 0x97 ); // max LNA gain, increase current by ~2mA for around ~3dB in sensitivity
/* ST_WORKAROUND_END */
buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
buf[2] = ( uint8_t )( timeout & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_RX, buf, 3 );
}
void SUBGRF_SetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime )
{
uint8_t buf[6];
buf[0] = ( uint8_t )( ( rxTime >> 16 ) & 0xFF );
buf[1] = ( uint8_t )( ( rxTime >> 8 ) & 0xFF );
buf[2] = ( uint8_t )( rxTime & 0xFF );
buf[3] = ( uint8_t )( ( sleepTime >> 16 ) & 0xFF );
buf[4] = ( uint8_t )( ( sleepTime >> 8 ) & 0xFF );
buf[5] = ( uint8_t )( sleepTime & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 6 );
OperatingMode = MODE_RX_DC;
}
void SUBGRF_SetCad( void )
{
SUBGRF_WriteCommand( RADIO_SET_CAD, 0, 0 );
OperatingMode = MODE_CAD;
}
void SUBGRF_SetTxContinuousWave( void )
{
SUBGRF_WriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 );
}
void SUBGRF_SetTxInfinitePreamble( void )
{
SUBGRF_WriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 );
}
void SUBGRF_SetStopRxTimerOnPreambleDetect( bool enable )
{
SUBGRF_WriteCommand( RADIO_SET_STOPRXTIMERONPREAMBLE, ( uint8_t* )&enable, 1 );
}
void SUBGRF_SetLoRaSymbNumTimeout( uint8_t symbNum )
{
SUBGRF_WriteCommand( RADIO_SET_LORASYMBTIMEOUT, &symbNum, 1 );
if( symbNum >= 64 )
{
uint8_t mant = symbNum >> 1;
uint8_t exp = 0;
uint8_t reg = 0;
while( mant > 31 )
{
mant >>= 2;
exp++;
}
reg = exp + ( mant << 3 );
SUBGRF_WriteRegister( REG_LR_SYNCH_TIMEOUT, reg );
}
}
void SUBGRF_SetRegulatorMode( void )
{
/* ST_WORKAROUND_BEGIN: Get RegulatorMode value from RBI */
RadioRegulatorMode_t mode;
if ( ( 1UL == RBI_IsDCDC() ) && ( 1UL == DCDC_ENABLE ) )
{
mode = USE_DCDC ;
}
else
{
mode = USE_LDO ;
}
/* ST_WORKAROUND_END */
SUBGRF_WriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 );
}
void SUBGRF_Calibrate( CalibrationParams_t calibParam )
{
uint8_t value = ( ( ( uint8_t )calibParam.Fields.ImgEnable << 6 ) |
( ( uint8_t )calibParam.Fields.ADCBulkPEnable << 5 ) |
( ( uint8_t )calibParam.Fields.ADCBulkNEnable << 4 ) |
( ( uint8_t )calibParam.Fields.ADCPulseEnable << 3 ) |
( ( uint8_t )calibParam.Fields.PLLEnable << 2 ) |
( ( uint8_t )calibParam.Fields.RC13MEnable << 1 ) |
( ( uint8_t )calibParam.Fields.RC64KEnable ) );
SUBGRF_WriteCommand( RADIO_CALIBRATE, &value, 1 );
}
void SUBGRF_CalibrateImage( uint32_t freq )
{
uint8_t calFreq[2];
if( freq > 900000000 )
{
calFreq[0] = 0xE1;
calFreq[1] = 0xE9;
}
else if( freq > 850000000 )
{
calFreq[0] = 0xD7;
calFreq[1] = 0xDB;
}
else if( freq > 770000000 )
{
calFreq[0] = 0xC1;
calFreq[1] = 0xC5;
}
else if( freq > 460000000 )
{
calFreq[0] = 0x75;
calFreq[1] = 0x81;
}
else if( freq > 425000000 )
{
calFreq[0] = 0x6B;
calFreq[1] = 0x6F;
}
SUBGRF_WriteCommand( RADIO_CALIBRATEIMAGE, calFreq, 2 );
}
void SUBGRF_SetPaConfig( uint8_t paDutyCycle, uint8_t hpMax, uint8_t deviceSel, uint8_t paLut )
{
uint8_t buf[4];
buf[0] = paDutyCycle;
buf[1] = hpMax;
buf[2] = deviceSel;
buf[3] = paLut;
SUBGRF_WriteCommand( RADIO_SET_PACONFIG, buf, 4 );
}
void SUBGRF_SetRxTxFallbackMode( uint8_t fallbackMode )
{
SUBGRF_WriteCommand( RADIO_SET_TXFALLBACKMODE, &fallbackMode, 1 );
}
void SUBGRF_SetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
{
uint8_t buf[8];
buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( irqMask & 0x00FF );
buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF );
buf[3] = ( uint8_t )( dio1Mask & 0x00FF );
buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF );
buf[5] = ( uint8_t )( dio2Mask & 0x00FF );
buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF );
buf[7] = ( uint8_t )( dio3Mask & 0x00FF );
SUBGRF_WriteCommand( RADIO_CFG_DIOIRQ, buf, 8 );
}
uint16_t SUBGRF_GetIrqStatus( void )
{
uint8_t irqStatus[2];
SUBGRF_ReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 );
return ( irqStatus[0] << 8 ) | irqStatus[1];
}
void SUBGRF_SetTcxoMode (RadioTcxoCtrlVoltage_t tcxoVoltage, uint32_t timeout )
{
uint8_t buf[4];
buf[0] = tcxoVoltage & 0x07;
buf[1] = ( uint8_t )( ( timeout >> 16 ) & 0xFF );
buf[2] = ( uint8_t )( ( timeout >> 8 ) & 0xFF );
buf[3] = ( uint8_t )( timeout & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_TCXOMODE, buf, 4 );
}
void SUBGRF_SetRfFrequency( uint32_t frequency )
{
uint8_t buf[4];
uint32_t chan = 0;
if( ImageCalibrated == false )
{
SUBGRF_CalibrateImage( frequency );
ImageCalibrated = true;
}
/* ST_WORKAROUND_BEGIN: Simplified frequency calculation */
SX_FREQ_TO_CHANNEL(chan, frequency);
/* ST_WORKAROUND_END */
buf[0] = ( uint8_t )( ( chan >> 24 ) & 0xFF );
buf[1] = ( uint8_t )( ( chan >> 16 ) & 0xFF );
buf[2] = ( uint8_t )( ( chan >> 8 ) & 0xFF );
buf[3] = ( uint8_t )( chan & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_RFFREQUENCY, buf, 4 );
}
void SUBGRF_SetPacketType( RadioPacketTypes_t packetType )
{
// Save packet type internally to avoid questioning the radio
PacketType = packetType;
if( packetType == PACKET_TYPE_GFSK )
{
SUBGRF_WriteRegister( REG_BIT_SYNC, 0x00 );
}
SUBGRF_WriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
}
RadioPacketTypes_t SUBGRF_GetPacketType( void )
{
return PacketType;
}
void SUBGRF_SetTxParams( uint8_t paSelect, int8_t power, RadioRampTimes_t rampTime )
{
uint8_t buf[2];
if( paSelect == RFO_LP )
{
if( power == 15 )
{
SUBGRF_SetPaConfig( 0x06, 0x00, 0x01, 0x01 );
}
else
{
SUBGRF_SetPaConfig( 0x04, 0x00, 0x01, 0x01 );
}
if( power >= 14 )
{
power = 14;
}
else if( power < -17 )
{
power = -17;
}
SUBGRF_WriteRegister( REG_OCP, 0x18 ); // current max is 80 mA for the whole device
}
else // rfo_hp
{
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
SUBGRF_WriteRegister( REG_TX_CLAMP, SUBGRF_ReadRegister( REG_TX_CLAMP ) | ( 0x0F << 1 ) );
// WORKAROUND END
SUBGRF_SetPaConfig( 0x04, 0x07, 0x00, 0x01 );
if( power > 22 )
{
power = 22;
}
else if( power < -9 )
{
power = -9;
}
SUBGRF_WriteRegister( REG_OCP, 0x38 ); // current max 160mA for the whole device
}
buf[0] = power;
buf[1] = ( uint8_t )rampTime;
SUBGRF_WriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
}
void SUBGRF_SetModulationParams( ModulationParams_t *modulationParams )
{
uint8_t n;
uint32_t tempVal = 0;
uint8_t buf[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// Check if required configuration corresponds to the stored packet type
// If not, silently update radio packet type
if( PacketType != modulationParams->PacketType )
{
SUBGRF_SetPacketType( modulationParams->PacketType );
}
switch( modulationParams->PacketType )
{
case PACKET_TYPE_GFSK:
n = 8;
tempVal = ( uint32_t )(( 32 * XTAL_FREQ ) / modulationParams->Params.Gfsk.BitRate );
buf[0] = ( tempVal >> 16 ) & 0xFF;
buf[1] = ( tempVal >> 8 ) & 0xFF;
buf[2] = tempVal & 0xFF;
buf[3] = modulationParams->Params.Gfsk.ModulationShaping;
buf[4] = modulationParams->Params.Gfsk.Bandwidth;
/* ST_WORKAROUND_BEGIN: Simplified frequency calculation */
SX_FREQ_TO_CHANNEL(tempVal, modulationParams->Params.Gfsk.Fdev);
/* ST_WORKAROUND_END */
buf[5] = ( tempVal >> 16 ) & 0xFF;
buf[6] = ( tempVal >> 8 ) & 0xFF;
buf[7] = ( tempVal& 0xFF );
SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n );
break;
case PACKET_TYPE_BPSK:
n = 4;
tempVal = ( uint32_t ) (( 32 * XTAL_FREQ) / modulationParams->Params.Bpsk.BitRate );
buf[0] = ( tempVal >> 16 ) & 0xFF;
buf[1] = ( tempVal >> 8 ) & 0xFF;
buf[2] = tempVal & 0xFF;
buf[3] = modulationParams->Params.Bpsk.ModulationShaping;
SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n );
break;
case PACKET_TYPE_LORA:
n = 4;
buf[0] = modulationParams->Params.LoRa.SpreadingFactor;
buf[1] = modulationParams->Params.LoRa.Bandwidth;
buf[2] = modulationParams->Params.LoRa.CodingRate;
buf[3] = modulationParams->Params.LoRa.LowDatarateOptimize;
SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n );
break;
case PACKET_TYPE_GMSK:
n = 5;
tempVal = ( uint32_t )(( 32 *XTAL_FREQ) / modulationParams->Params.Gfsk.BitRate );
buf[0] = ( tempVal >> 16 ) & 0xFF;
buf[1] = ( tempVal >> 8 ) & 0xFF;
buf[2] = tempVal & 0xFF;
buf[3] = modulationParams->Params.Gfsk.ModulationShaping;
buf[4] = modulationParams->Params.Gfsk.Bandwidth;
SUBGRF_WriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n );
break;
default:
case PACKET_TYPE_NONE:
break;
}
}
void SUBGRF_SetPacketParams( PacketParams_t *packetParams )
{
uint8_t n;
uint8_t crcVal = 0;
uint8_t buf[9] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
// Check if required configuration corresponds to the stored packet type
// If not, silently update radio packet type
if( PacketType != packetParams->PacketType )
{
SUBGRF_SetPacketType( packetParams->PacketType );
}
switch( packetParams->PacketType )
{
case PACKET_TYPE_GMSK:
case PACKET_TYPE_GFSK:
if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_IBM )
{
SUBGRF_SetCrcSeed( CRC_IBM_SEED );
SUBGRF_SetCrcPolynomial( CRC_POLYNOMIAL_IBM );
crcVal = RADIO_CRC_2_BYTES;
}
else if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_CCIT )
{
SUBGRF_SetCrcSeed( CRC_CCITT_SEED );
SUBGRF_SetCrcPolynomial( CRC_POLYNOMIAL_CCITT );
crcVal = RADIO_CRC_2_BYTES_INV;
}
else
{
crcVal = packetParams->Params.Gfsk.CrcLength;
}
n = 9;
buf[0] = ( packetParams->Params.Gfsk.PreambleLength >> 8 ) & 0xFF;
buf[1] = packetParams->Params.Gfsk.PreambleLength;
buf[2] = packetParams->Params.Gfsk.PreambleMinDetect;
buf[3] = ( packetParams->Params.Gfsk.SyncWordLength /*<< 3*/ ); // convert from byte to bit
buf[4] = packetParams->Params.Gfsk.AddrComp;
buf[5] = packetParams->Params.Gfsk.HeaderType;
buf[6] = packetParams->Params.Gfsk.PayloadLength;
buf[7] = crcVal;
buf[8] = packetParams->Params.Gfsk.DcFree;
break;
case PACKET_TYPE_BPSK:
n = 1;
buf[0] = packetParams->Params.Bpsk.PayloadLength;
break;
case PACKET_TYPE_LORA:
n = 6;
buf[0] = ( packetParams->Params.LoRa.PreambleLength >> 8 ) & 0xFF;
buf[1] = packetParams->Params.LoRa.PreambleLength;
buf[2] = LoRaHeaderType = packetParams->Params.LoRa.HeaderType;
buf[3] = packetParams->Params.LoRa.PayloadLength;
buf[4] = packetParams->Params.LoRa.CrcMode;
buf[5] = packetParams->Params.LoRa.InvertIQ;
break;
default:
case PACKET_TYPE_NONE:
return;
}
SUBGRF_WriteCommand( RADIO_SET_PACKETPARAMS, buf, n );
}
void SUBGRF_SetCadParams( RadioLoRaCadSymbols_t cadSymbolNum, uint8_t cadDetPeak, uint8_t cadDetMin, RadioCadExitModes_t cadExitMode, uint32_t cadTimeout )
{
uint8_t buf[7];
buf[0] = ( uint8_t )cadSymbolNum;
buf[1] = cadDetPeak;
buf[2] = cadDetMin;
buf[3] = ( uint8_t )cadExitMode;
buf[4] = ( uint8_t )( ( cadTimeout >> 16 ) & 0xFF );
buf[5] = ( uint8_t )( ( cadTimeout >> 8 ) & 0xFF );
buf[6] = ( uint8_t )( cadTimeout & 0xFF );
SUBGRF_WriteCommand( RADIO_SET_CADPARAMS, buf, 7 );
OperatingMode = MODE_CAD;
}
void SUBGRF_SetBufferBaseAddress( uint8_t txBaseAddress, uint8_t rxBaseAddress )
{
uint8_t buf[2];
buf[0] = txBaseAddress;
buf[1] = rxBaseAddress;
SUBGRF_WriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
}
RadioStatus_t SUBGRF_GetStatus( void )
{
uint8_t stat = 0;
RadioStatus_t status = { .Value = 0 };
/* ST_WORKAROUND_BEGIN: Read the Device Status by the GET_STATUS command (HAL limitations) */
SUBGRF_ReadCommand( RADIO_GET_STATUS, &stat, 1 );
/* ST_WORKAROUND_END */
status.Fields.CmdStatus = ( stat & ( 0x07 << 1 ) ) >> 1;
status.Fields.ChipMode = ( stat & ( 0x07 << 4 ) ) >> 4;
return status;
}
int8_t SUBGRF_GetRssiInst( void )
{
uint8_t buf[1];
int8_t rssi = 0;
SUBGRF_ReadCommand( RADIO_GET_RSSIINST, buf, 1 );
rssi = -buf[0] >> 1;
return rssi;
}
void SUBGRF_GetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer )
{
uint8_t status[2];
SUBGRF_ReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 );
// In case of LORA fixed header, the payloadLength is obtained by reading
// the register REG_LR_PAYLOADLENGTH
if( ( SUBGRF_GetPacketType( ) == PACKET_TYPE_LORA ) && ( LoRaHeaderType == LORA_PACKET_FIXED_LENGTH ) )
{
*payloadLength = SUBGRF_ReadRegister( REG_LR_PAYLOADLENGTH );
}
else
{
*payloadLength = status[0];
}
*rxStartBufferPointer = status[1];
}
void SUBGRF_GetPacketStatus( PacketStatus_t *pktStatus )
{
uint8_t status[3];
SUBGRF_ReadCommand( RADIO_GET_PACKETSTATUS, status, 3 );
pktStatus->packetType = SUBGRF_GetPacketType( );
switch( pktStatus->packetType )
{
case PACKET_TYPE_GFSK:
pktStatus->Params.Gfsk.RxStatus = status[0];
pktStatus->Params.Gfsk.RssiSync = -status[1] >> 1;
pktStatus->Params.Gfsk.RssiAvg = -status[2] >> 1;
pktStatus->Params.Gfsk.FreqError = 0;
break;
case PACKET_TYPE_LORA:
pktStatus->Params.LoRa.RssiPkt = -status[0] >> 1;
// Returns SNR value [dB] rounded to the nearest integer value
pktStatus->Params.LoRa.SnrPkt = ( ( ( int8_t )status[1] ) + 2 ) >> 2;
pktStatus->Params.LoRa.SignalRssiPkt = -status[2] >> 1;
pktStatus->Params.LoRa.FreqError = FrequencyError;
break;
default:
case PACKET_TYPE_NONE:
// In that specific case, we set everything in the pktStatus to zeros
// and reset the packet type accordingly
RADIO_MEMSET8( pktStatus, 0, sizeof( PacketStatus_t ) );
pktStatus->packetType = PACKET_TYPE_NONE;
break;
}
}
RadioError_t SUBGRF_GetDeviceErrors( void )
{
uint8_t err[] = { 0, 0 };
RadioError_t error = { .Value = 0 };
SUBGRF_ReadCommand( RADIO_GET_ERROR, ( uint8_t * )err, 2 );
error.Fields.PaRamp = ( err[0] & ( 1 << 0 ) ) >> 0;
error.Fields.PllLock = ( err[1] & ( 1 << 6 ) ) >> 6;
error.Fields.XoscStart = ( err[1] & ( 1 << 5 ) ) >> 5;
error.Fields.ImgCalib = ( err[1] & ( 1 << 4 ) ) >> 4;
error.Fields.AdcCalib = ( err[1] & ( 1 << 3 ) ) >> 3;
error.Fields.PllCalib = ( err[1] & ( 1 << 2 ) ) >> 2;
error.Fields.Rc13mCalib = ( err[1] & ( 1 << 1 ) ) >> 1;
error.Fields.Rc64kCalib = ( err[1] & ( 1 << 0 ) ) >> 0;
return error;
}
void SUBGRF_ClearDeviceErrors( void )
{
uint8_t buf[2] = { 0x00, 0x00 };
SUBGRF_WriteCommand( RADIO_CLR_ERROR, buf, 2 );
}
void SUBGRF_ClearIrqStatus( uint16_t irq )
{
uint8_t buf[2];
buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF );
SUBGRF_WriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 );
}
void SUBGRF_WriteRegister( uint16_t addr, uint8_t data )
{
HAL_SUBGHZ_WriteRegisters( &hsubghz, addr, (uint8_t*)&data, 1 );
}
uint8_t SUBGRF_ReadRegister( uint16_t addr )
{
uint8_t data;
HAL_SUBGHZ_ReadRegisters( &hsubghz, addr, &data, 1 );
return data;
}
void SUBGRF_WriteRegisters( uint16_t address, uint8_t *buffer, uint16_t size )
{
CRITICAL_SECTION_BEGIN();
HAL_SUBGHZ_WriteRegisters( &hsubghz, address, buffer, size );
CRITICAL_SECTION_END();
}
void SUBGRF_ReadRegisters( uint16_t address, uint8_t *buffer, uint16_t size )
{
CRITICAL_SECTION_BEGIN();
HAL_SUBGHZ_ReadRegisters( &hsubghz, address, buffer, size );
CRITICAL_SECTION_END();
}
void SUBGRF_WriteBuffer( uint8_t offset, uint8_t *buffer, uint8_t size )
{
CRITICAL_SECTION_BEGIN();
HAL_SUBGHZ_WriteBuffer( &hsubghz, offset, buffer, size );
CRITICAL_SECTION_END();
}
void SUBGRF_ReadBuffer( uint8_t offset, uint8_t *buffer, uint8_t size )
{
CRITICAL_SECTION_BEGIN();
HAL_SUBGHZ_ReadBuffer( &hsubghz, offset, buffer, size );
CRITICAL_SECTION_END();
}
void SUBGRF_WriteCommand( SUBGHZ_RadioSetCmd_t Command, uint8_t *pBuffer,
uint16_t Size )
{
CRITICAL_SECTION_BEGIN();
HAL_SUBGHZ_ExecSetCmd( &hsubghz, Command, pBuffer, Size );
CRITICAL_SECTION_END();
}
void SUBGRF_ReadCommand( SUBGHZ_RadioGetCmd_t Command, uint8_t *pBuffer,
uint16_t Size )
{
CRITICAL_SECTION_BEGIN();
HAL_SUBGHZ_ExecGetCmd( &hsubghz, Command, pBuffer, Size );
CRITICAL_SECTION_END();
}
void SUBGRF_SetSwitch( uint8_t paSelect, RFState_t rxtx )
{
RBI_Switch_TypeDef state = RBI_SWITCH_RX;
if (rxtx == RFSWITCH_TX)
{
if (paSelect == RFO_LP)
{
state = RBI_SWITCH_RFO_LP;
Radio_SMPS_Set(SMPS_DRIVE_SETTING_MAX);
}
if (paSelect == RFO_HP)
{
state = RBI_SWITCH_RFO_HP;
}
}
else
{
if (rxtx == RFSWITCH_RX)
{
state = RBI_SWITCH_RX;
}
}
RBI_ConfigRFSwitch(state);
}
uint8_t SUBGRF_SetRfTxPower( int8_t power )
{
uint8_t paSelect= RFO_LP;
int32_t TxConfig = RBI_GetTxConfig();
switch (TxConfig)
{
case RBI_CONF_RFO_LP_HP:
{
if (power > 15)
{
paSelect = RFO_HP;
}
else
{
paSelect = RFO_LP;
}
break;
}
case RBI_CONF_RFO_LP:
{
paSelect = RFO_LP;
break;
}
case RBI_CONF_RFO_HP:
{
paSelect = RFO_HP;
break;
}
default:
break;
}
SUBGRF_SetTxParams( paSelect, power, RADIO_RAMP_40_US );
return paSelect;
}
uint32_t SUBGRF_GetRadioWakeUpTime( void )
{
return RF_WAKEUP_TIME;
}
/* HAL_SUBGHz Callbacks definitions */
void HAL_SUBGHZ_TxCpltCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_TX_DONE );
}
void HAL_SUBGHZ_RxCpltCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_RX_DONE );
}
void HAL_SUBGHZ_CRCErrorCallback (SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_CRC_ERROR);
}
void HAL_SUBGHZ_CADStatusCallback(SUBGHZ_HandleTypeDef *hsubghz, HAL_SUBGHZ_CadStatusTypeDef cadstatus)
{
switch (cadstatus)
{
case HAL_SUBGHZ_CAD_CLEAR:
RadioOnDioIrqCb( IRQ_CAD_CLEAR);
break;
case HAL_SUBGHZ_CAD_DETECTED:
RadioOnDioIrqCb( IRQ_CAD_DETECTED);
break;
default:
break;
}
}
void HAL_SUBGHZ_RxTxTimeoutCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_RX_TX_TIMEOUT );
}
void HAL_SUBGHZ_HeaderErrorCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_HEADER_ERROR );
}
void HAL_SUBGHZ_PreambleDetectedCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_PREAMBLE_DETECTED );
}
void HAL_SUBGHZ_SyncWordValidCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_SYNCWORD_VALID );
}
void HAL_SUBGHZ_HeaderValidCallback(SUBGHZ_HandleTypeDef *hsubghz)
{
RadioOnDioIrqCb( IRQ_HEADER_VALID );
}
static void Radio_SMPS_Set(uint8_t level)
{
if ( 1U == RBI_IsDCDC() )
{
uint8_t modReg;
modReg= SUBGRF_ReadRegister(SUBGHZ_SMPSC2R);
modReg&= (~SMPS_DRV_MASK);
SUBGRF_WriteRegister(SUBGHZ_SMPSC2R, modReg | level);
}
}
uint8_t SUBGRF_GetFskBandwidthRegValue( uint32_t bandwidth )
{
uint8_t i;
if( bandwidth == 0 )
{
return( 0x1F );
}
/* ST_WORKAROUND_BEGIN: Simplified loop */
for( i = 0; i < ( sizeof( FskBandwidths ) / sizeof( FskBandwidth_t ) ); i++ )
{
if ( bandwidth < FskBandwidths[i].bandwidth )
{
return FskBandwidths[i].RegValue;
}
}
/* ST_WORKAROUND_END */
// ERROR: Value not found
while( 1 );
}
void SUBGRF_GetCFO( uint32_t bitRate, int32_t *cfo)
{
uint8_t BwMant[] = {4, 8, 10, 12};
/* read demod bandwidth: mant bit4:3, exp bits 2:0 */
uint8_t reg = (SUBGRF_ReadRegister( SUBGHZ_BWSEL ));
uint8_t bandwidth_mant = BwMant[( reg >> 3 ) & 0x3];
uint8_t bandwidth_exp = reg & 0x7;
uint32_t cf_fs = XTAL_FREQ / ( bandwidth_mant * ( 1 << ( bandwidth_exp - 1 )));
uint32_t cf_osr = cf_fs / bitRate;
uint8_t interp = 1;
/* calculate demod interpolation factor */
if (cf_osr * interp < 8)
{
interp = 2;
}
if (cf_osr * interp < 4)
{
interp = 4;
}
/* calculate demod sampling frequency */
uint32_t fs = cf_fs* interp;
/* get the cfo registers */
int32_t cfo_bin = ( SUBGRF_ReadRegister( SUBGHZ_CFO_H ) & 0xF ) << 8;
cfo_bin |= SUBGRF_ReadRegister( SUBGHZ_CFO_L );
/* negate if 12 bits sign bit is 1 */
if (( cfo_bin & 0x800 ) == 0x800 )
{
cfo_bin |= 0xFFFFF000;
}
/* calculate cfo in Hz */
/* shift by 5 first to not saturate, cfo_bin on 12bits */
*cfo = ((int32_t)( cfo_bin * ( fs >> 5 ))) >> ( 12 - 5 );
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/